Publications by authors named "Nicole den Elzen"

Background: A suspected Lynch syndrome (SLS) diagnosis is made when a tumor exhibits DNA mismatch repair deficiency but cannot be definitively assigned to an inherited or non-inherited etiology. This diagnosis poses challenges for healthcare professionals, patients, and their families in managing future cancer risks and clinical care.

Methods: This qualitative study aimed to explore the psychosocial and behavioral responses of endometrial cancer (EC) patients receiving a SLS diagnosis (EC-SLS).

View Article and Find Full Text PDF

Background: A diagnosis of suspected Lynch syndrome (SLS) is given when a tumour displays characteristics consistent with Lynch syndrome (LS), but no germline pathogenic variant is identified. This inconclusive diagnosis results in uncertainty around appropriate cancer risk management. This qualitative study explored how patients with CRC interpret and respond to an SLS diagnosis.

View Article and Find Full Text PDF

Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells.

View Article and Find Full Text PDF

Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites.

View Article and Find Full Text PDF

Eukaryotic protein kinases are key molecules mediating signal transduction that play a pivotal role in the regulation of various biological processes, including cell cycle progression, cellular morphogenesis, development, and cellular response to environmental changes. A total of 106 eukaryotic protein kinase catalytic-domain-containing proteins have been found in the entire fission yeast genome, 44% (or 64%) of which possess orthologues (or nearest homologues) in humans, based on sequence similarity within catalytic domains. Systematic deletion analysis of all putative protein kinase-encoding genes have revealed that 17 out of 106 were essential for viability, including three previously uncharacterized putative protein kinases.

View Article and Find Full Text PDF

The G2 DNA damage checkpoint prevents mitotic entry in the presence of DNA damage. This requires the activation of the phosphoinositide-3-kinase-related protein kinases ATR and ATM in human cells and the ATR homologue Rad3 in the fission yeast Schizosaccharomyces pombe. Rad3 activates the effector protein kinase Chk1 by phosphorylation.

View Article and Find Full Text PDF

Classical cadherin adhesion molecules are fundamental determinants of cell-cell recognition that function in cooperation with the actin cytoskeleton. Productive cadherin-based cell recognition is characterized by a distinct morphological process of contact zone extension, where limited initial points of adhesion are progressively expanded into broad zones of contact. We recently demonstrated that E-cadherin ligation recruits the Arp2/3 actin nucleator complex to the plasma membrane in regions where cell contacts are undergoing protrusion and extension.

View Article and Find Full Text PDF

The G2 DNA damage checkpoint prevents mitotic entry in the presence of damaged DNA, and thus is essential for cells to replicate with stable genetic inheritance. Whilst significant progress has been made in the past 10 years on the mechanism of checkpoint activation, little attention has been paid to how the DNA damage checkpoint is switched off to allow cell cycle re-entry. Insight into the mechanism of cell cycle re-entry was recently provided by our finding that the Schizosaccharomyces pombe type 1 phosphatase (PP1) Dis2 dephosphorylates the checkpoint effector kinase Chk1.

View Article and Find Full Text PDF

The G2 DNA damage checkpoint delays mitotic entry via the upregulation of Wee1 kinase and the downregulation of Cdc25 phosphatase by Chk1 kinase, and resultant inhibitory phosphorylation of Cdc2. While checkpoint activation is well understood, little is known about how the checkpoint is switched off to allow cell cycle re-entry. To identify proteins required for checkpoint release, we screened for genes in Schizosaccharomyces pombe that, when overexpressed, result in precocious mitotic entry in the presence of DNA damage.

View Article and Find Full Text PDF

Progress through mitosis is controlled by the sequential destruction of key regulators including the mitotic cyclins and securin, an inhibitor of anaphase whose destruction is required for sister chromatid separation. Here we have used live cell imaging to determine the exact time when human securin is degraded in mitosis. We show that the timing of securin destruction is set by the spindle checkpoint; securin destruction begins at metaphase once the checkpoint is satisfied.

View Article and Find Full Text PDF

Cyclins A and E and their partner cyclin-dependent kinases (Cdks) are key regulators of DNA synthesis and of mitosis. Immunofluorescence studies have shown that both cyclins are nuclear and that a proportion of cyclin A is localized to sites of DNA replication. However, recently, both cyclin A and cyclin E have been implicated as regulators of centrosome replication, and it is unclear when and where these cyclin-Cdks can interact with cytoplasmic substrates.

View Article and Find Full Text PDF