Publications by authors named "Nicole Wolf"

In recent years, pathogenic variants in ARS genes, encoding aminoacyl-tRNA synthetases (aaRSs), have been associated with human disease. Patients harbouring pathogenic variants in ARS genes have clinical signs partly unique to certain aaRSs defects, partly overlapping between the different aaRSs defects. Diagnosis relies mostly on genetics and remains challenging, often requiring functional validation of new ARS variants.

View Article and Find Full Text PDF

Objective: POLR3B encodes the second largest subunit of RNA polymerase III, which is essential for transcription of small non-coding RNAs. Biallelic pathogenic variants in POLR3B are associated with an inherited hypomyelinating leukodystrophy. Recently, de novo heterozygous variants in POLR3B were reported in six individuals with ataxia, spasticity, and demyelinating peripheral neuropathy.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) pattern recognition is a powerful tool for quick diagnosis of genetic and acquired white matter disorders. In many cases, distribution and character of white matter abnormalities directly point to a specific diagnosis and guide confirmatory testing. Knowledge of normal brain development is essential to interpret white matter changes in young children.

View Article and Find Full Text PDF

Amino-acyl tRNA synthetases (ARSs) are enzymes that catalyze the amino-acylation reaction of a specific amino acid and its cognate tRNA and are divided into type 1 (cytosolic) and type 2 (mitochondrial). In this chapter leukodystrophies caused by tRNA synthetase deficiencies are reviewed.

View Article and Find Full Text PDF

Objectives: The leukodystrophy "vanishing white matter" (VWM) and "metachromatic leukodystrophy" (MLD) affect the brain's white matter, but have very different underlying pathology. We aim to determine whether quantitative MRI reflects known neuropathological differences and correlates with clinical scores in these leukodystrophies.

Methods: VWM and MLD patients and controls were prospectively included between 2020 and 2023.

View Article and Find Full Text PDF
Article Synopsis
  • Alpha-methylacyl-CoA racemase (AMACR) deficiency is a rare genetic disorder that causes the buildup of toxic bile acids and has been minimally studied, with fewer than 20 documented cases.
  • A recent study involving 12 patients revealed that symptoms like retinitis pigmentosa and neurological issues typically develop in adults after a significant delay in diagnosis, with a median age of 56 years at the time of identification.
  • The condition presents primarily as a slowly progressive neurological disease, and MRI scans can help identify characteristic brain abnormalities, highlighting the need for better recognition and awareness of AMACR deficiency.
View Article and Find Full Text PDF

Colony stimulating factor 1 receptor (CSF1R) is an essential receptor for both colony stimulating factor 1 (CSF1) and interleukin (IL) 34 signaling expressed on monocyte precursors and myeloid cells, including monocytes, dendritic cells (DC), and microglia. In humans, dominant heterozygous pathogenic variants in CSF1R cause a neurological condition known as CSF1R-related disorder (CSF1R-RD), typically with late onset, previously referred to as adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). CSF1R-RD is characterized by microglia reduction and altered monocyte function; however, the impact of pathogenic CSF1R variants on the human DC lineage remains largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Progress in genetic diagnosis and orphan drug legislation has led to new therapies for rare neurogenetic diseases (RNDs), but challenges remain in academia, regulation, and finances.
  • The study aims to create a practical framework for developing patient registries that address these challenges and enhance outcomes in care, research, and drug development for RNDs.
  • A comprehensive approach combining literature review, interviews with existing registries, and feedback from various stakeholders was used to ensure the framework meets diverse needs and emphasizes key principles like accessible, independent, and trustworthy data governance.
View Article and Find Full Text PDF

Background: Assessment of myelination is a core issue in paediatric neuroimaging and can be challenging, particularly in settings without dedicated paediatric neuroradiologists. Deep learning models have recently been shown to be able to estimate myelination age in children with normal MRI, but currently lack validation for patients with myelination delay and implementation including pre-processing suitable for local imaging is not trivial. Standardized myelination scores, which have been successfully used as biomarkers for myelination in hypomyelinating diseases, rely on visual, semiquantitative scoring of myelination on routine clinical MRI and may offer an easy-to-use alternative for assessment of myelination.

View Article and Find Full Text PDF

Riboflavin transporter deficiency (RTD) is a genetic disorder of reduced riboflavin (vitamin B2) uptake that causes progressive, multifocal neurological dysfunction. Most patients present in early childhood; if patients present later in life, symptoms usually develop more gradually. We report three previously healthy young adults, who developed rapidly progressive neurological symptoms after decreasing dietary intake of meat and dairy.

View Article and Find Full Text PDF

Aim: This exploratory study evaluates rating scale usage by experts from the European Reference Network for Rare Neurological Diseases (ERN-RND) for paediatric MD, considering factors like diagnosis, intellectual disability, age, and transition to adult care. The aim is to propose a preliminary framework for consistent application.

Methods: A multicentre survey among 25 ERN-RND experts from 10 European countries examined rating scale usage in paediatric MD, categorizing MD into acute, non-progressive, and neurodegenerative types.

View Article and Find Full Text PDF

We report three siblings homozygous for CSF1R variant c.1969 + 115_1969 + 116del to expand the phenotype of "brain abnormalities, neurodegeneration, and dysosteosclerosis" (BANDDOS) and discuss its link with "adult leukoencephalopathy with axonal spheroids and pigmented glia" (ALSP), caused by heterozygous CSF1R variants. We evaluated medical, radiological, and laboratory findings and reviewed the literature.

View Article and Find Full Text PDF

Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter.

View Article and Find Full Text PDF

Inherited optic neuropathies (IONs) are rare genetic diseases characterized by progressive visual loss due the atrophy of optic nerves. The standard diagnostic workup involving next-generation sequencing panels has a diagnostic yield of about forty percent. In the other 60% of the patients with a clinical diagnosis of ION, the underlying genetic variants remain unknown.

View Article and Find Full Text PDF

A small proportion of children with a sudden onset torticollis ("wry neck") presents with an atlantoaxial rotatory subluxation, usually after mild trauma or recent head or neck infection. Torticollis is a clinical diagnosis and imaging is usually not indicated, though often performed in clinical practice. Atlantoaxial rotatory subluxation on imaging is often a physiological phenomenon in torticollis, and concomitant neurological symptoms are therefore rare.

View Article and Find Full Text PDF

Metachromatic leukodystrophy (MLD) is a neuro-metabolic disorder due to arylsulfatase A deficiency, causing demyelination of the central and peripheral nervous system. Hematopoietic cell transplantation (HCT) can provide a symptomatic and survival benefit for pre-symptomatic and early symptomatic patients by stabilizing CNS disease. This case series, however, illustrates the occurrence of severely progressive polyneuropathy shortly after HCT in two patients with late-infantile, one with late-juvenile, and one with adult MLD, leading to the inability to walk or sit without support.

View Article and Find Full Text PDF

Introduction: Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically.

View Article and Find Full Text PDF

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder characterized by arylsulfatase A (ASA) deficiency, leading to sulfatide accumulation and myelin degeneration in the central nervous system. While primarily considered a white matter (WM) disease, gray matter (GM) is also affected in MLD, and hematopoietic stem cell transplantation (HSCT) may have limited effect on GM atrophy. We cross-sectionally and longitudinally studied GM volumes using volumetric MRI in a cohort of 36 (late-infantile, juvenile and adult type) MLD patients containing untreated and HSCT treated subjects.

View Article and Find Full Text PDF

Background: For decades, early allogeneic stem cell transplantation (HSCT) has been used to slow neurological decline in metachromatic leukodystrophy (MLD). There is lack of consensus regarding who may benefit, and guidelines are lacking. Clinical practice relies on limited literature and expert opinions.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of intrathecal (IT) recombinant human arylsulfatase A (rhASA) on magnetic resonance imaging (MRI)-assessed brain tissue changes in children with metachromatic leukodystrophy (MLD). In total, 510 MRI scans were collected from 12 intravenous (IV) rhASA-treated children with MLD, 24 IT rhASA-treated children with MLD, 32 children with untreated MLD, and 156 normally developing children. Linear mixed models were fitted to analyze the time courses of gray matter (GM) volume and fractional anisotropy (FA) in the posterior limb of the internal capsule.

View Article and Find Full Text PDF

Objectives: Investigate the results and usability of the Vineland-3 as an outcome measure in vanishing white matter patients.

Methods: A cross-sectional investigation of the Vineland-3 based on interviews with caregivers, the Health Utilities Index, and the modified Rankin Scale in 64 vanishing white matter patients.

Results: Adaptive behavior measured with the Vineland-3 is impaired in the vast majority of vanishing white matter patients and significantly impacts daily life.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive neuromuscular degeneration resulting from mutations in the survival motor neuron () gene. The availability of disease-modifying therapies for SMA therapies highlights the pressing need for easily accessible and cost-effective blood biomarkers to monitor treatment response and for better disease management. Additionally, the wide implementation of newborn genetic screening programs in Western countries enables presymptomatic diagnosis of SMA and immediate treatment administration.

View Article and Find Full Text PDF

Background And Purpose: Magnetic resonance imaging (MRI) measures of tissue microstructure are important for monitoring brain white matter (WM) disorders like leukodystrophies and multiple sclerosis. They should be sensitive to underlying pathological changes. Three whole-brain isotropic quantitative methods were applied and compared within a cohort of controls and leukodystrophy patients: two novel myelin water imaging (MWI) techniques (multi-compartment relaxometry diffusion-informed MWI: MCR-DIMWI, and multi-echo T2 relaxation imaging with compressed sensing: METRICS) and neurite orientation dispersion and density imaging (NODDI).

View Article and Find Full Text PDF

Background: Transition from child-centered to adult-centered healthcare is a gradual process that addresses the medical, psychological, and educational needs of young people in the management of their autonomy in making decisions about their health and their future clinical assistance. This transfer is challenging across all chronic diseases but can be particularly arduous in rare neurological conditions.

Aim: To describe the current practice on the transition process for young patients in centers participating in the European Reference Network for Rare Neurological Diseases (ERN-RND).

View Article and Find Full Text PDF