LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets.
View Article and Find Full Text PDFMethods were developed to estimate the potential impacts and natural resource damages resulting from oil spills using probabilistic modeling techniques. The oil fates model uses wind data, current data, and transport and weathering algorithms to calculate mass balance of fuel components in various environmental compartments (water surface, shoreline, water column, atmosphere, sediments, etc.), oil pathway over time (trajectory), surface distribution, shoreline oiling, and concentrations of the fuel components in water and sediments.
View Article and Find Full Text PDF