5-hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5-hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N porosimetry, XPS and ATR-IR.
View Article and Find Full Text PDFThe chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture.
View Article and Find Full Text PDFChemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture.
View Article and Find Full Text PDFZnO nanoparticles (NPs) are prone to dissolution, and uncertainty remains whether biological/cellular responses to ZnO NPs are solely due to the release of Zn(2+) or whether the NPs themselves have additional toxic effects. We address this by establishing ZnO NP solubility in dispersion media (Dulbecco's modified Eagle's medium, DMEM) held under conditions identical to those employed for cell culture (37 °C, 5% CO2, and pH 7.68) and by systematic comparison of cell-NP interaction for three different ZnO NP preparations.
View Article and Find Full Text PDFThe selective aerobic oxidation of cinnamyl alcohol over Pt nanoparticles has been tuned via the use of mesoporous silica supports to control their dispersion and oxidation state. High area two-dimensional SBA-15, and three-dimensional, interconnected KIT-6 silica significantly enhance Pt dispersion, and thus surface PtO2 concentration, over that achievable via commercial low surface area silica. Selective oxidation activity scales with Pt dispersion in the order KIT-6 ≥ SBA-15 > SiO2, evidencing surface PtO2 as the active site for cinnamyl alcohol selox to cinnamaldehyde.
View Article and Find Full Text PDFMechanisms for cellular uptake of nanoparticles have important implications for nanoparticulate drug delivery and toxicity. We have explored the mechanism of uptake of amorphous silica nanoparticles of 14 nm diameter, which agglomerate in culture medium to hydrodynamic diameters around 500 nm. In HT29, HaCat and A549 cells, cytotoxicity was observed at nanoparticle concentrations ≥ 1 μg/ml, but DNA damage was evident at 0.
View Article and Find Full Text PDFPrussian Blue (PB) analogue metal coordination nanocages comprised of mesoporous walls (ca. 3.5 nm pore width) encapsulating a cavity approaching ca.
View Article and Find Full Text PDFMetal coordination polymer nanoboxes are reported for the first time. Initially spherical miniemulsion droplet templates were transformed to hollow cubic crystalline nanostructures via a miniemulsion periphery polymerization conducted under benign thermal and chemical conditions.
View Article and Find Full Text PDFDirect microwave synthesis between solids is limited by the restricted number of materials that exhibit microwave heating at room temperature. The dielectric properties of most materials dictate that microwave heating can occur at higher temperatures, primarily due to increasing conduction losses. Microwave-induced plasma promoted microwave heating circumvents the requirement for room temperature microwave heating allowing microwave methods to be applied to a greater range of materials.
View Article and Find Full Text PDF