Publications by authors named "Nicole Robey"

Thermal landfill leachate evaporator systems can reduce the volume of leachate by up to 97%, while releasing water vapor and producing residuals (volume-reduced leachate and sludge) that are managed on-site. On-site thermal evaporators offer landfill operators leachate management autonomy without being subject to increasingly stringent wastewater treatment plant requirements. However, little is known about the partitioning of PFAS within these systems, nor the extent to which PFAS may be emitted into the environment via vapor.

View Article and Find Full Text PDF

Elevated per- and polyfluoroalkyl substance (PFAS) concentrations have been reported in municipal solid waste (MSW) landfill leachate with higher levels in wet and warmer subtropical climates. Information about landfill leachate characteristics is much more limited in tropical climates. In this study, 20 landfill leachate samples were collected from three MSW landfills on the tropical island of Puerto Rico and results were compared against landfills nationally and within Florida, USA.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread presence and environmental persistence. Carbon-fluorine (C-F) bonds are major components among PFAS and among the strongest organic bonds, thus destroying PFAS may present significant challenge. Thermal treatment such as incineration is an effective and approved method for destroying many halogenated organic chemicals.

View Article and Find Full Text PDF

Composting municipal food waste is a key strategy for beneficially reusing methane-producing waste that would otherwise occupy landfill space. However, land-applied compost can cycle per- and polyfluoroalkyl substances (PFAS) back into the food supply and the environment. We partnered with a pilot-scale windrow composting facility to investigate the sources and fate of 40 PFAS in food waste compost.

View Article and Find Full Text PDF

With regulations for per-and polyfluoroalkyl substances (PFAS) impending, the abundance of these chemicals of emerging concern in municipal solid waste (MSW) landfill leachate increasingly challenges landfill operators to seek on-site leachate pre-treatment options. This two-staged study explores the potential reuse of biochar derived from construction and demolition debris (CDD) wood as an in-situ PFAS sorbent for application within MSW landfill leachate collection systems. Batch leaching tests were first used to examine the feasibility of capturing PFAS from landfill leachate using two sources of CDD-wood-derived biochar.

View Article and Find Full Text PDF

Landfills manage materials containing per- and polyfluoroalkyl substances (PFAS) from municipal solid waste (MSW) and other waste streams. This manuscript summarizes state and federal initiatives and critically reviews peer-reviewed literature to define best practices for managing these wastes and identify data gaps to guide future research. The objective is to inform stakeholders about waste-derived PFAS disposed of in landfills, PFAS emissions, and the potential for related environmental impacts.

View Article and Find Full Text PDF

This study investigated the behavior of per- and polyfluoroalkyl substances (PFAS) in multiple pilot-scale vertical flow constructed wetlands (VFCW) treating landfill leachate. Eight pilot-scale VFCW columns planted with Typha latifolia or Scirpus Californicus were fed untreated municipal solid waste (MSW) landfill leachate that was diluted with potable water at a 1:10 ratio (1 part leachate to 10 parts total) at a fixed daily hydraulic loading rate of 0.525 m d.

View Article and Find Full Text PDF

While per- and polyfluoroalkyl substances (PFAS) have been reported extensively in municipal solid waste (MSW) landfill leachate,they have rarely been quantified in landfill gas or in discrete landfill liquids such as landfill gas condensate (LGC), and the potential for PFAS to partition to the condensate has not been reported. LGC and leachate collected from within gas wells known as gas well pump-out (GWP) from three MSW landfills underwent physical-chemical characterization and PFAS analysis to improve understanding of the conditions under which these liquids form and to illuminate PFAS behavior within landfills. LGC was observed to be clear liquid containing ammonia and alkalinity while GWP strongly resembled leachate - dark in color, high in chloride and ammonia.

View Article and Find Full Text PDF

Wastewater treatment plants generate a solid waste known as biosolids. The most common management option for biosolids is to beneficially reuse them as an agricultural amendment, but because of the risk of pathogen exposure, many regulatory bodies require pathogen reduction before biosolids reuse. Per- and polyfluoroalkyl substances (PFAS) are well documented in biosolids, but limited information is available on how biosolids treatment processes impact PFAS.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a class of anthropogenic chemicals used to provide water and stain resistance in many consumer products. Their widespread use, nearly ubiquitous presence across multiple environments, and growing list of adverse health effects has raised concerns among communities. PFAS have been frequently detected and quantified globally in wastewater, groundwater, surface and drinking water; however, the presence of PFAS in swimming pool water - a unique matrix in which constituents may concentrate through evaporation and which also may present a high risk of direct human exposure - has not been reported.

View Article and Find Full Text PDF

Phosphogypsum (PG) samples from four distinct sources in the Southeastern US were analyzed to explore the variation in total metal content between newly generated (fresh) PG and PG disposed of in phosphogypsum stacks for different lengths of time (stack). Fresh PG exhibited greater total metal concentrations relative to stack PG, including those identified in the literature as important from a risk assessment perspective (As, Cd, Co, Cr, Cu, Pb, and Zn). The pH varied between fresh and stack PG, with some stack samples exhibiting lower pH than fresh samples, however the relationship between pH and age of sample was not linear.

View Article and Find Full Text PDF

Antimony is used extensively in consumer goods, including single use plastic bottles, electronics, textiles and automobile brakes, which are disposed of in landfills at the end of their service lives. As a result, Sb is a constituent of concern in landfill emissions. Previous research has focused on leachate (liquid) and waste incineration flue gas emissions; however, Sb has the potential to volatilize through chemical and microbial processes within a landfill.

View Article and Find Full Text PDF

One hundred and seventeen street sweeping samples were collected and analyzed for per- and polyfluoroalkyl substances (PFAS). Fifty-six samples were collected in one city (Gainesville, Florida) allowing for an in-depth city-wide characterization. Street sweepings from five other urban areas, (Orlando, n = 15; Key West, n = 15; Pensacola, n = 12; Tampa, n = 13; and Daytona Beach, n = 6) were analyzed to provide a city-to-city comparison of PFAS.

View Article and Find Full Text PDF

Municipal solid waste contain diverse and significant amounts of per- and polyfluoroalkyl substances (PFAS), and these compounds may transform throughout the "landfilling" process from transport through landfill degradation. Fresh vehicle leachates, from commercial and residential waste collection vehicles at a transfer station, were measured for 51 PFAS. Results were compared to PFAS levels obtained from aged landfill leachate at the disposal facility.

View Article and Find Full Text PDF

Large volumes of per- and polyfluoroalkyl substances (PFAS)-contaminated wastewaters, such as municipal solid waste landfill leachates, pose a challenge for PFAS treatment technologies in practice today. In this study, the surfactant properties of PFAS were exploited to concentrate the compounds in foam produced via the bubble aeration of landfill leachate. The effectiveness of the foaming technique for concentrating PFAS varied by compound, with a mean removal percentage (the percent difference between PFAS in leachate before and after foam removal) of 69% and a median removal percentage of 92% among the 10 replicate foaming experiments.

View Article and Find Full Text PDF

Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and nontarget screening with liquid chromatography (LC)-high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date, no automated open source PFAS data analysis software exists to mine these extensive data sets.

View Article and Find Full Text PDF

Construction and demolition (C&D) wood can be recycled as mulch for landscaping or cogeneration. Limitations to such recycling are dependent on metals concentrations in mulch (As, Cu, and Cr) from the inclusion of waterborne-preservative treated wood. The objective of this study was to evaluate the amount of waterborne-preservative treated wood (by wood volume and by mass of metal) that enters the C&D wood waste stream in the U.

View Article and Find Full Text PDF

A limitation to recycling wood from construction and demolition (C&D) waste is contamination of metals from the inadvertent inclusion of preservative treated wood, in particular wood treated with chromated copper arsenate (CCA) and newer copper-based formulations. To minimize contamination many regions have developed best management practices (BMPs) for separating treated from untreated wood. The objective of this study was to evaluate the fraction of preservative treated wood in recycled C&D wood after the implementation of BMPs, using Florida as a case study.

View Article and Find Full Text PDF