Publications by authors named "Nicole R Luke-Marshall"

, , and nontypeable (NTHi) are ubiquitous upper respiratory opportunistic pathogens. Together, these three microbes are the most common causative bacterial agents of pediatric otitis media (OM) and have therefore been characterized as the primary human otopathogens. OM is the most prevalent bacterial infection in children and the primary reason for antibiotic administration in this population.

View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) develops clinically, even with antibiotic treatment, and methicillin-resistant (MRSA) and are predominant causes of these infections. Due to biofilm formation, antibiotic treatment for patients with PJI can perpetuate resistance, further complicating the use of noninvasive treatments. This study evaluated cathodic-voltage-controlled electrical stimulation (CVCES) of titanium, in combination with a clinically relevant antibiotic, to synergistically prevent MRSA and PJIs by inhibiting bacterial adherence or as a treatment for eradicating established biofilms.

View Article and Find Full Text PDF

Here, we report the draft genome sequence of Streptococcus pneumoniae EF3030, a pediatric otitis media isolate active in biofilm assays of epithelial colonization. The final draft assembly included 2,209,198 bp; the annotation predicted 2,120 coding DNA sequences (CDSs), 4 complete rRNA operons, 58 tRNAs, 3 noncoding RNAs (ncRNAs), and 199 pseudogenes.

View Article and Find Full Text PDF

and are ubiquitous upper respiratory opportunistic pathogens. Individually, these Gram-positive microbes are two of the most common causative agents of secondary bacterial pneumonia following influenza A virus infection, and they constitute a significant source of morbidity and mortality. Since the introduction of the pneumococcal conjugate vaccine, rates of cocolonization with both of these bacterial species have increased, despite the traditional view that they are antagonistic and mutually exclusive.

View Article and Find Full Text PDF

Magnesium alloys hold great promise for developing orthopedic implants that are biocompatible, biodegradable, and mechanically similar to bone tissue. This study evaluated the in vitro and in vivo antimicrobial properties of magnesium-9%aluminum-1%zinc (AZ91) and commercially pure titanium (cpTi) against Acinetobacter baumannii (Ab307). The in vitro results showed that as compared to cpTi, incubation with AZ91 significantly reduced both the planktonic (cpTi = 3.

View Article and Find Full Text PDF

Unlabelled: Staphylococcus aureus is a ubiquitous opportunistic human pathogen and a major health concern worldwide, causing a wide variety of diseases from mild skin infections to systemic disease. S. aureus is a major source of severe secondary bacterial pneumonia after influenza A virus infection, which causes widespread morbidity and mortality.

View Article and Find Full Text PDF

Background: Cathodic voltage-controlled electrical stimulation (CVCES) of titanium implants, either alone or combined with a short course of vancomycin, has previously been shown to reduce the bone and implant bacterial burden in a rodent model of methicillin-resistant Staphylococcus aureus (MRSA) implant-associated infection (IAI). Clinically, the goal is to achieve complete eradication of the IAI; therefore, the rationale for the present study was to evaluate the antimicrobial effects of combining CVCES with prolonged antibiotic therapy with the goal of decreasing the colony-forming units (CFUs) to undetectable levels.

Questions/purposes: (1) In an animal MRSA IAI model, does combining CVCES with prolonged vancomycin therapy decrease bacteria burden on the implant and surrounding bone to undetectable levels? (2) When used with prolonged vancomycin therapy, are two CVCES treatments more effective than one? (3) What are the longer term histologic effects (inflammation and granulation tissue) of CVCES on the surrounding tissue?

Methods: Twenty adult male Long-Evans rats with surgically placed shoulder titanium implants were infected with a clinical strain of MRSA (NRS70).

View Article and Find Full Text PDF

Background: Effective treatments for implant-associated infections are often lacking. Cathodic voltage-controlled electrical stimulation has shown potential as a treatment of implant-associated infections of methicillin-resistant Staphylococcus aureus (MRSA).

Questions/purposes: The primary purpose of this study was to (1) determine if cathodic voltage-controlled electrical stimulation combined with vancomycin therapy is more effective at reducing the MRSA bacterial burden on the implant, bone, and synovial fluid in comparison to either treatment alone or no treatment controls.

View Article and Find Full Text PDF

Effective treatment options are often limited for implant-associated orthopedic infections. In this study we evaluated the antimicrobial effects of applying cathodic voltage-controlled electrical stimulation (CVCES) of -1.8 V (vs.

View Article and Find Full Text PDF

Background And Objective: Moraxella catarrhalis is a significant cause of pediatric otitis media (OM), which is the most prevalent bacterial infection in children and primary reason for antibiotic administration in this population. Moreover, biofilm formation has been implicated as a primary mechanism of chronic or recurrent OM disease. As bacterial biofilms are inherently resistant to most antibiotics and these complex structures also present a significant challenge to the immune system, there is a clear need to identify novel antimicrobial approaches to treat OM infections.

View Article and Find Full Text PDF

The human respiratory tract pathogen Moraxella catarrhalis expresses lipooligosaccharides (LOS), glycolipid surface moieties that are associated with enhanced colonization and virulence. Recent studies have delineated the major steps required for the biosynthesis and assembly of the M. catarrhalis LOS molecule.

View Article and Find Full Text PDF

The emergence of extremely resistant and panresistant Gram-negative bacilli, such as Acinetobacter baumannii, requires consideration of nonantimicrobial therapeutic approaches. The goal of this report was to evaluate the K1 capsular polysaccharide from A. baumannii as a passive immunization target.

View Article and Find Full Text PDF

Moraxella catarrhalis is a Gram-negative aerobic diplococcus that is a mucosal pathogen of the upper and lower respiratory tracts in humans. In order to colonize the human host and establish an infection, M. catarrhalis must be able to effectively attach to the respiratory mucosal epithelia.

View Article and Find Full Text PDF