Publications by authors named "Nicole Paland"

Rheumatoid diseases, including rheumatoid arthritis, osteoarthritis, and fibromyalgia, are characterized by progressive inflammation in the musculoskeletal system, predominantly affecting the joints and leading to cartilage and bone damage. The resulting pain and ongoing degradation of the musculoskeletal system contribute to reduced physical activity, ultimately impacting quality of life and imposing a substantial socioeconomic burden. Unfortunately, current therapeutics have limited efficacy in slowing disease progression and managing pain.

View Article and Find Full Text PDF

Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea.

View Article and Find Full Text PDF

We describe a mechanism by which the anti-apoptotic B cell lymphoma 2 (Bcl-2) protein is downregulated to induce apoptosis. ARTS (Sept4_i2) is a tumor suppressor protein that promotes cell death through specifically antagonizing XIAP (X-linked inhibitor of apoptosis). ARTS and Bcl-2 reside at the outer mitochondrial membrane in living cells.

View Article and Find Full Text PDF

Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.

View Article and Find Full Text PDF

Objective: The liver is the central organ of fatty acid and triglyceride metabolism. Oxidation and synthesis of fatty acids and triglycerides is under the control of peroxisome-proliferator-activated receptors (PPAR) α. Impairment of these receptors' function contributes to the accumulation of triglycerides in the liver resulting in non-alcoholic fatty liver disease.

View Article and Find Full Text PDF

Objectives: The aim of the present study was to investigate the effect of urokinase-type plasminogen activator (uPA) on the expression of the scavenger receptor class B type I (SR-BI) in hepatocytes, and its impact on the removal of HDL-cholesteryl ester (CE) in the liver.

Methods And Results: Huh7 hepatoma cell lines were incubated with increasing concentrations of uPA. uPA dose-dependently decreased SR-BI protein expression, as determined by flow cytometry (FACS) and by Western blot assays, and down-regulated SR-BI gene expression.

View Article and Find Full Text PDF

Objective: Monocyte-to-macrophage differentiation and macrophage death play a pivotal role in atherogenesis. uPA and its receptor uPAR are expressed in atherosclerotic lesion macrophages and contribute to atherosclerosis progression. In the present study we investigated the effect and mechanisms of action of uPA on monocyte-to-macrophage differentiation and on macrophage apoptotic death.

View Article and Find Full Text PDF

The aim of this study was to analyze the effect and mechanism of action of macrophage triglyceride accumulation on cellular PON2 expression. Incubation of J774A.1 (murine macrophages) with VLDL (0-75 μg protein/mL) significantly and dose-dependently increased cellular triglyceride mass, and reactive oxygen species (ROS) formation, by up to 3.

View Article and Find Full Text PDF

The prostate is composed of a number of different cell populations. The interaction between them is crucial for the development and proper function of the prostate. However, the effect of the molecular cross talk between these cells in the course of carcinogenesis is still unclear.

View Article and Find Full Text PDF

It is well accepted that tumor microenvironment is essential for tumor cells survival, cancer progression and metastasis. However, the mechanisms by which tumor cells interact with their surrounding at early stages of cancer development are largely unidentified. The aim of this study was to identify specific molecules involved in stromal-epithelial interactions that might contribute to early stages of prostate tumor formation.

View Article and Find Full Text PDF

The obligate intracellular human pathogenic bacterium Chlamydia trachomatis has evolved multiple mechanisms to circumvent the host immune system. Infected cells exhibit a profound resistance to the induction of apoptosis and down-regulate the expression of major histocompatibility complex class I and class II molecules to evade the cytotoxic effect of effector immune cells. Here we demonstrate the down-regulation of tumor necrosis factor receptor 1 (TNFR1) on the surface of infected cells.

View Article and Find Full Text PDF

Host cells infected with obligate intracellular bacteria Chlamydia trachomatis are profoundly resistant to diverse apoptotic stimuli. The molecular mechanisms underlying the block in apoptotic signaling of infected cells is not well understood. Here we investigated the molecular mechanism by which apoptosis induced via the tumor necrosis factor (TNF) receptor is prevented in infected epithelial cells.

View Article and Find Full Text PDF

Infection with Chlamydophila pneumoniae (Cpn) renders host cells resistant to apoptosis induced by a variety of stimuli. While modulation of apoptosis has been extensively studied in cells acutely infected with Cpn, very little is known on how persistent chlamydial infection influences host cell survival. Here we show that epithelial cells persistently infected with Cpn resist apoptosis induced with TNFalpha or staurosporine.

View Article and Find Full Text PDF