Publications by authors named "Nicole Ortega"

The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial production, particularly in osteo-conduction/-induction, and de novo clinical/surgical bone regeneration. Henceforth, this study explores re-purposing salmon waste through a standardized pre-treatment process that minimizes the biological content, followed by a treatment stage to remove proteins, lipids, and other compounds, resulting in a mineral-rich substrate.

View Article and Find Full Text PDF

Complex ecological relationships, such as host-parasite interactions, are often modeled with laboratory experiments. However, some experimental laboratory conditions, such as temperature or infection dose, are regularly chosen based on convenience or convention, and it is unclear how these decisions systematically affect experimental outcomes. Here, we conducted a meta-analysis of 58 laboratory studies that exposed amphibians to the pathogenic fungus Batrachochytrium dendrobatidis (Bd) to understand better how laboratory temperature, host life stage, infection dose, and host species affect host mortality.

View Article and Find Full Text PDF

Global climate change is increasing the frequency of unpredictable weather conditions; however, it remains unclear how species-level and geographic factors, including body size and latitude, moderate impacts of unusually warm or cool temperatures on disease. Because larger and lower-latitude hosts generally have slower acclimation times than smaller and higher-latitude hosts, we hypothesised that their disease susceptibility increases under 'thermal mismatches' or differences between baseline climate and the temperature during surveying for disease. Here, we examined how thermal mismatches interact with body size, life stage, habitat, latitude, elevation, phylogeny and International Union for Conservation of Nature (IUCN) conservation status to predict infection prevalence of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a global analysis of 32 291 amphibian hosts.

View Article and Find Full Text PDF

Resource availability can significantly alter host-parasite dynamics. Abundant food can provide more resources for hosts to resist infections, but also increase host tolerance of infections by reducing competition between hosts and parasites for food. Whether abundant food favors host resistance or tolerance (or both) might depend on the type of resource that the parasite exploits (e.

View Article and Find Full Text PDF

Humans are altering the distribution of species by changing the climate and disrupting biotic interactions and dispersal. A fundamental hypothesis in spatial ecology suggests that these effects are scale dependent; biotic interactions should shape distributions at local scales, whereas climate should dominate at regional scales. If so, common single-scale analyses might misestimate the impacts of anthropogenic modifications on biodiversity and the environment.

View Article and Find Full Text PDF

Because shifts in host-parasite relationships can alter host populations, attention should be given to the parasites that introduced species take with them or acquire in their introduced range. The Cuban treefrog, Osteopilus septentrionalis, is a successful invasive species in Florida with its parasites in the native range being well-documented, but there is a void in the literature regarding what parasites were lost or introduced in its expansion. We necropsied 330 O.

View Article and Find Full Text PDF

Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked.

View Article and Find Full Text PDF

Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians.

View Article and Find Full Text PDF