Carbon-modified fibrous structures with high biocompatibility have attracted much attention due to their low cost, sustainability, abundance, and excellent electrical properties. However, some carbon-based materials possess low specific capacitance and electrochemical performance, which pose significant challenges in developing electronic microdevices. In this study, we report a microfluidic-based technique of manufacturing alginate hollow microfibers incorporated by water dispersed modified graphene (bovine serum albumin-graphene).
View Article and Find Full Text PDFOne field of study in microfluidics is the control, trapping, and separation of microparticles suspended in fluid. Some of its applications are related to cell handling, virus detection, and so on. One of the new methods in this field is using ICEK phenomena and dielectrophoresis forces.
View Article and Find Full Text PDFThe manufacturing of 3D cell scaffoldings provides advantages for modeling diseases and injuries as it enables the creation of physiologically relevant platforms. A triple-flow microfluidic device is developed to rapidly fabricate alginate/graphene hollow microfibers based on the gelation of alginate induced with CaCl . This five-channel microdevice actualizes continuous mild fabrication of hollow fibers under an optimized flow rate ratio of 300:200:100 µL min .
View Article and Find Full Text PDFTo date, a comprehensive systematic optimization framework, capable of accurately predicting an efficient electrode geometry, is not available. Here, different geometries, including 3D step electrodes, have been designed in order to fabricate AC electroosmosis micropumps. It is essential to optimize both geometrical parameters of electrode, such as width and height of steps on each base electrode and their location in one pair, the size of each base electrode (symmetric or asymmetric), the gap of electrode pairs, and nongeometrical parameters such as fluid flow in a channel and electrical characteristics (e.
View Article and Find Full Text PDFElectrohydrodynamic-jet (E-jet) printing technique enables the high-resolution printing of complex soft electronic devices. As such, it has an unmatched potential for becoming the conventional technique for printing soft electronic devices. In this study, the electrical conductivity of the E-jet printed circuits was studied as a function of key printing parameters (nozzle speed, ink flow rate, and voltage).
View Article and Find Full Text PDFAt present, the blood-brain barrier (BBB) poses a challenge for treating a wide range of central nervous system disorders; reliable BBB models are still needed to understand and manipulate the transfer of molecules into the brain, thereby improving the efficiency of treatments. In this study, hollow, cell-laden microfibers are fabricated and investigated as a starting point for generating BBB models. The genetic effects of the manufacturing process are analyzed to understand the implications of encapsulating cells in this manner.
View Article and Find Full Text PDFReal-time and high-throughput cytometric monitoring of neural cells exposed to injury mechanisms is invaluable for in-vitro studies. Electrical impedance spectroscopy via microelectrode arrays is a label-free technique for monitoring of neural growth and their detachment upon death. In this method, the interface material plays a vital role to provide desirable attachment cues for the cell network.
View Article and Find Full Text PDFTo understand the transport of pharmaceutical agents and their effects on developing fetus, we have created a placental microsystem that mimics structural phenotypes and physiological characteristic of a placental barrier. We have shown the formation of a continuous network of epithelial adherens junctions and endothelial cell-cell junctions confirming the integrity of the placental barrier. More importantly, the formation of elongated microvilli under dynamic flow condition is demonstrated.
View Article and Find Full Text PDFMimicking microvascular tissue microenvironment in vitro calls for a cytocompatible technique of manufacturing biocompatible hollow microfibers suitable for cell-encapsulation/seeding in and around them. The techniques reported to date either have a limit on the microfiber dimensions or undergo a complex manufacturing process. Here, a microfluidic-based method for cell seeding inside alginate hollow microfibers is designed whereby mouse astrocytes (C8-D1A) are passively seeded on the inner surface of these hollow microfibers.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2022
Understanding the changes in the electrochemical properties of neural cells upon exposure to stress factors imparts vital information about the conditions prior to their death. This study presents a graphene-based biosensor for real-time monitoring of N27 rat dopaminergic neural cells which characterizes cell adhesion and cytotoxicity factors through impedance spectroscopy. The aim was to monitor the growth of the entire cell network via a nonmetallic flexible electrode array.
View Article and Find Full Text PDFEngineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue.
View Article and Find Full Text PDFA scalable manufacturing method for the production of biocompatible fewlayered graphene nanosheets is developed using hydrodynamic cavitation. Scalable exfoliation is induced by employing hydrodynamic cavitation and a serum albumin protein. Unlike acoustic cavitation, the primary means of bubble collapse in hydrodynamic cavitation is caused laterally, thereby separating two adjacent flakes through a shear effect.
View Article and Find Full Text PDFA facile method to produce few-layer graphene (FLG) nanosheets is developed using protein-assisted mechanical exfoliation. The predominant shear forces that are generated in a planetary ball mill facilitate the exfoliation of graphene layers from graphite flakes. The process employs a commonly known protein, bovine serum albumin (BSA), which not only acts as an effective exfoliation agent but also provides stability by preventing restacking of the graphene layers.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
July 2021
In recent years, the unique and tunable properties of microfluidically spun microfibers have led to tremendous advancements for the field of biomedical engineering, which have been applied to areas such as tissue engineering, wound dressing, and drug delivery, as well as cell encapsulation and cell seeding. In this article, we analyze the most recent advances in microfluidics and microfluidically spun microfibers, with an emphasis on biomedical applications. We explore in detail these new and innovative experiments, how microfibers are made, the experimental purpose of making microfibers, and the future work that can be done as a result of these new types of microfibers.
View Article and Find Full Text PDFOrgan-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world.
View Article and Find Full Text PDFWhen a traumatic brain injury (TBI) occurs, low-pressure regions inside the skull can cause vapor contents in the cerebral spinal fluid (CSF) to expand and collapse, a phenomenon known as cavitation. When these microbubbles (MBs) collapse, shock waves are radiated outward and are known to damage surrounding materials in other applications, like the steel foundation of boat propellers, so it is alarming to realize the damage that cavitation inflicts on vulnerable brain tissue. Using cell-laden microfibers, the longitudinal morphological response that mouse astrocytes have to surrounding cavitation in vitro is visually analyzed.
View Article and Find Full Text PDFBecause of the limitations imposed by traditional two-dimensional (2D) cultures, biomaterials have become a major focus in neural and tissue engineering to study cell behavior . 2D systems fail to account for interactions between cells and the surrounding environment; these cell-matrix interactions are important to guide cell differentiation and influence cell behavior such as adhesion and migration. Biomaterials provide a unique approach to help mimic the native microenvironment .
View Article and Find Full Text PDFThe microvasculature is a vital organ that distributes nutrients within tissues, and collects waste products from them, and which defines the environmental conditions in both normal and disease situations. Here, a microfluidic chip was developed for the fabrication of poly(ethylene glycol diacrylate) (PEGDA)-based hollow self-standing microvessels having inner dimensions ranging from 15 μm to 73 μm and displaying biocompatibility/cytocompatibility. Macromer solutions were hydrodynamically focused into a single microchannel to form a concentric flow regime, and were subsequently solidified through photopolymerization.
View Article and Find Full Text PDFPresented here is a scalable and aqueous phase exfoliation of graphite to high yield and quality of few layer graphene (FLG) using Bovine Serum Albomine (BSA) and wet ball milling. The produced graphene ink is tailored for printable and flexible electronics, having shown promising results in terms of electrical conductivity and temporal stability. Shear force generated by steel balls which resulted in 2-3 layer defect-free graphene platelets with an average size of hundreds of nm, and with a concentration of about 5.
View Article and Find Full Text PDFDue to the particular structure and functionality of the placenta, most current human placenta drug testing methods are limited to animal models, conventional cell testing, and cohort/controlled testing. Previous studies have produced inconsistent results due to physiological differences between humans and animals and limited availability of human and/or animal models for controlled testing. To overcome these challenges, a placenta-on-a-chip system is developed for studying the exchange of substances to and from the placenta.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disease in the United States after Alzheimer's disease (AD). To help understand the electrophysiology of these diseases, N27 neuronal cells have been used as an in vitro model. In this study, a flexible graphene-based biosensor design is presented.
View Article and Find Full Text PDFIn the past few decades, the placenta became a very controversial topic that has had many researchers and pharmacists discussing the significance of the effects of pharmaceutical drug intake and how it is a possible leading cause towards birth defects. The creation of an microengineered model of the placenta can be used to replicate the interactions between the mother and fetus, specifically pharmaceutical drug intake reactions. As the field of nanotechnology significantly continues growing, nanotechnology will become more apparent in the study of medicine and other scientific disciplines, specifically microengineering applications.
View Article and Find Full Text PDFBow tie-shaped fibers and spherical microparticles with controlled dimensions and shapes were fabricated with poly(ethylene glycol) diacrylate hydrogel utilizing hydrodynamic shear principles and a photopolymerization strategy under a microfluidic regime. Decreasing the flow rate ratio between the core and sheath fluids from 25 (50:2) to 1.25 (100:80) resulted in increasing the particles size and reducing the production rate by 357 and 86%, respectively.
View Article and Find Full Text PDFEncapsulating cells within microfibers allows for immobilization with a high degree of spatial-temporal control. Furthermore, microfluidic encapsulation allows for the continuous creation of tunable fibers using mild, cell-friendly gelation conditions, making it advantageous over other fabrication methods. Mouse astrocyte cells (MACs) encapsulated within microfluidically produced alginate fibers had a 24 h survival rate of up to 89%, with up to 60% of cells surviving 11 days of encapsulation.
View Article and Find Full Text PDFBiomaterials are essential for the development of innovative biomedical and therapeutic applications. Biomaterials-based scaffolds can influence directed cell differentiation to improve cell-based strategies. Using a novel microfluidics approach, poly (ε-caprolactone) (PCL), is used to fabricate microfibers with varying diameters (3-40 µm) and topographies (straight and wavy).
View Article and Find Full Text PDF