Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B.
View Article and Find Full Text PDFThe hexameric AAA ATPase Vps4 drives membrane fission by remodeling and disassembling ESCRT-III filaments. Building upon our earlier 4.3 Å resolution cryo-EM structure (Monroe et al.
View Article and Find Full Text PDFMany important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeF, and an ESCRT-III substrate peptide.
View Article and Find Full Text PDFMeiotic clade AAA ATPases (ATPases associated with diverse cellular activities), which were initially grouped on the basis of phylogenetic classification of their AAA ATPase cassette, include four relatively well characterized family members, Vps4, spastin, katanin and fidgetin. These enzymes all function to disassemble specific polymeric protein structures, with Vps4 disassembling the ESCRT-III polymers that are central to the many membrane-remodeling activities of the ESCRT (endosomal sorting complexes required for transport) pathway and spastin, katanin p60 and fidgetin affecting multiple aspects of cellular dynamics by severing microtubules. They share a common domain architecture that features an N-terminal MIT (microtubule interacting and trafficking) domain followed by a single AAA ATPase cassette.
View Article and Find Full Text PDFThe endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis.
View Article and Find Full Text PDFThe cellular ESCRT (endosomal sorting complexes required for transport) pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including the human immunodeficiency virus. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear.
View Article and Find Full Text PDFThe formation of well-diffracting crystals is a major bottleneck in structural analysis of membrane proteins by X-ray crystallography. One approach to improve crystal quality is the use of DARPins as crystallization chaperones. Here, we present a detailed analysis of the interaction between DARPins and the integral membrane protein AcrB.
View Article and Find Full Text PDF