Background: Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection.
Methodology/principal Findings: However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5-/-). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L.
Listeria monocytogenes is a facultative intracellular pathogen capable of inducing a robust cell-mediated immune response to sub-lethal infection. The capacity of L. monocytogenes to escape from the phagosome and enter the host cell cytosol is paramount for the induction of long-lived CD8 T cell-mediated protective immunity.
View Article and Find Full Text PDFInfection with wild-type Listeria monocytogenes activates a host cytosolic surveillance response characterized by the expression of beta interferon (IFN-beta). We performed a genetic screen to identify L. monocytogenes transposon insertion mutants that induced altered levels of host IFN-beta expression.
View Article and Find Full Text PDFHow the innate immune system tailors specific responses to diverse microbial infections is not well understood. Cells use a limited number of host receptors and signaling pathways to both discriminate among extracellular and intracellular microbes, and also to generate responses commensurate to each threat. Here, we have addressed these questions by using DNA microarrays to monitor the macrophage transcriptional response to the intracellular bacterial pathogen Listeria monocytogenes.
View Article and Find Full Text PDFListeria monocytogenes is a bacterial, facultative intracellular pathogen, which secretes a pore-forming toxin called listeriolysin O (LLO). LLO mediates the dissolution of the phagosomal membrane allowing L. monocytogenes to reach and grow in the host cytosolic compartment.
View Article and Find Full Text PDFHeparan sulfate proteoglycans are integral components of the extracellular matrix that surrounds all mammalian cells. In addition to providing structural integrity, they act as a storage depot for a variety of heparan sulfate (HS)-binding proteins, including growth factors and chemokines. Heparanase is a matrix-degrading enzyme that cleaves heparan sulfate side chains from the core proteoglycans, thus liberating such HS-binding proteins, as well as potentially contributing to extracellular matrix degradation.
View Article and Find Full Text PDFListeria monocytogenes is a facultative intracellular pathogen that induces a cytosolic signaling cascade resulting in expression of interferon (IFN)-beta. Although type I IFNs are critical in viral defense, their role in immunity to bacterial pathogens is much less clear. In this study, we addressed the role of type I IFNs by examining the infection of L.
View Article and Find Full Text PDFTumors develop through successive stages characterized by changes in gene expression and protein function. Gene expression profiling of pancreatic islet tumors in a mouse model of cancer revealed upregulation of cathepsin cysteine proteases. Cathepsin activity was assessed using chemical probes allowing biochemical and in vivo imaging, revealing increased activity associated with the angiogenic vasculature and invasive fronts of carcinomas, and differential expression in immune, endothelial, and cancer cells.
View Article and Find Full Text PDFFunctions of receptor tyrosine kinases implicated in angiogenesis were pharmacologically impaired in a mouse model of pancreatic islet cancer. An inhibitor targeting VEGFRs in endothelial cells (SU5416) is effective against early-stage angiogenic lesions, but not large, well-vascularized tumors. In contrast, a kinase inhibitor incorporating selectivity for PDGFRs (SU6668) is shown to block further growth of end-stage tumors, eliciting detachment of pericytes and disruption of tumor vascularity.
View Article and Find Full Text PDFIn a transgenic model of multi-stage squamous carcinogenesis induced by human papillomavirus (HPV) oncogenes, infiltrating CD4+ T cells can be detected in both premalignant and malignant lesions. The lymph nodes that drain sites of epidermal neoplasia contain activated CD4+ T cells predominantly reactive toward Staphylococcal bacterial antigens. HPV16 mice deficient in CD4+ T cells were found to have delayed neoplastic progression and a lower incidence of tumors.
View Article and Find Full Text PDF