Publications by authors named "Nicole Mazara"

Purpose: It is suggested that the early phase (< 50 ms) of force development during a muscle contraction is associated with intrinsic contractile properties, while the late phase (> 50 ms) is associated with maximal force. There are no direct investigations of single muscle fibre rate of force development (RFD) as related to joint-level RFD METHODS: Sixteen healthy, young (n = 8; 26.4 ± 1.

View Article and Find Full Text PDF

Skeletal muscle force production is increased at longer compared to shorter muscle lengths because of length-dependent priming of thick filament proteins in the contractile unit before contraction. Using small-angle X-ray diffraction in combination with a mouse model that specifically cleaves the stretch-sensitive titin protein, we found that titin cleavage diminished the length-dependent priming of the thick filament. Strikingly, a titin-sensitive, length-dependent priming was also present in thin filaments, which seems only possible via bridge proteins between thick and thin filaments in resting muscle, potentially myosin-binding protein C.

View Article and Find Full Text PDF

Background: The number of adults across the globe with significant depressive symptoms has grown substantially during the COVID-19 pandemic. The extant literature supports exercise as a potent behaviour that can significantly reduce depressive symptoms in clinical and non-clinical populations.

Objective: Using a suite of mobile applications, at-home exercise, including high intensity interval training (HIIT) and/or yoga, was completed to reduce depressive symptoms in the general population in the early months of the pandemic.

View Article and Find Full Text PDF

High-intensity eccentric exercise can lead to muscle damage and weakness. The 'repeated bout effect' (RBE) can attenuate these impairments when performing a subsequent bout. The influence of eccentric exercise-induced muscle damage on low-frequency force production is well-characterized; however, it is unclear how eccentric exercise and the RBE affect torque production across a range of stimulation frequencies (i.

View Article and Find Full Text PDF

Natural adult aging is associated with declines in skeletal muscle performance, including impaired Ca sensitivity and a slowing of rapid force production (rate of force redevelopment; k). The purpose of this study was to investigate the relationship between impaired Ca sensitivity and k of single muscle fibres from young and older adults. Participants included 8 young (22-35 yrs) and 8 older (60-81 yrs) males who were living independently.

View Article and Find Full Text PDF

High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output.

View Article and Find Full Text PDF

Studies on single muscle fiber passive material properties often report relatively large variation in elastic modulus (or normalized stiffness), and it is not clear where this variation arises. This study was designed to determine if the stiffness, normalized to both fiber cross-sectional area and length, is inherently different between types 1 and 2 muscle fibers. Vastus lateralis fibers (n = 93), from ten young men, were mechanically tested using a cumulative stretch-relaxation protocol.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how aging affects the passive properties of single muscle fibers in males, comparing young (average age 25.4) and older (average age 68.9) participants.
  • Older individuals displayed significantly higher passive elastic moduli and passive stress in their muscle fibers at specific sarcomere lengths, indicating stiffness increases with age.
  • These findings offer new understanding of how muscle fiber properties change as people age, particularly focusing on length-dependency.
View Article and Find Full Text PDF

Residual force depression (rFD) and residual force enhancement (rFE) are intrinsic contractile properties of muscle. rFD is characterized as a decrease in steady-state isometric force following active shortening compared with a purely isometric contraction at the same muscle length and level of activation. By contrast, isometric force is increased following active lengthening compared to a reference isometric contraction at the same muscle length and level of activation; this is termed rFE.

View Article and Find Full Text PDF

Key Points: Skeletal muscle stem cells, termed satellite cells, play a crucial role in repair and remodelling of muscle in response to exercise An age-related decline in satellite cell number and/or function has been hypothesized to be a key factor in the development of sarcopenia and/or the blunted muscle fibre adaptive response to prolonged exercise training in older persons We report that performing prolonged exercise training improves the acute type II muscle fibre satellite cell response following a single bout of resistance exercise in older men. The observed improvement in muscle satellite function is associated with an increase in muscle fibre capillarization following exercise training suggesting a possible functional link between capillarization and satellite cell function.

Abstract: Age-related type II muscle fibre atrophy is accompanied by a fibre type-specific decline in satellite cell number and function.

View Article and Find Full Text PDF

Background: The isometric steady-state following active lengthening is associated with greater torque production and lower activation, as measured by electromyographic activity (EMG), in comparison with a purely isometric contraction (ISO) at the same joint angle. This phenomenon is termed residual force enhancement (RFE). While there has been a great deal of research investigating the basic mechanisms of RFE, little work has been performed to understand the everyday relevance of RFE.

View Article and Find Full Text PDF

Purpose: The bilateral deficit (BLD) is characterized by a reduction in maximal voluntary torque during a bilateral contraction relative to the sum of left and right unilateral contractions. The BLD has been attributed to interhemispheric inhibition as a result of unilateral torque differences between limbs. If the BLD is the result of interhemispheric inhibition, lowering activation for a torque matching task, as shown in residual force enhancement (RFE), may help overcome the decrease in neural drive during bilateral contractions.

View Article and Find Full Text PDF

Background: Nutritional supplementation can have beneficial effects on body composition, strength, and function in older adults. However, whether the response of satellite cells can be altered by nutritional supplementation in older adults remains unknown.

Objective: We assessed whether a multi-ingredient protein-based supplement taken over a prolonged period of time could alter the muscle satellite cell response after exercise in older men.

View Article and Find Full Text PDF

Preservation of lean body mass (LBM) may be important during dietary energy restriction (ER) and requires equal rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Currently, the relative contribution of MPS and MPB to the loss of LBM during ER in humans is unknown. We aimed to determine the impact of dietary protein intake and resistance exercise on MPS and MPB during a controlled short-term energy deficit.

View Article and Find Full Text PDF

We reported, using a unilateral resistance training (RT) model, that training with high or low loads (mass per repetition) resulted in similar muscle hypertrophy and strength improvements in RT-naïve subjects. Here we aimed to determine whether the same was true in men with previous RT experience using a whole-body RT program and whether postexercise systemic hormone concentrations were related to changes in hypertrophy and strength. Forty-nine resistance-trained men (23 ± 1 yr, mean ± SE) performed 12 wk of whole-body RT.

View Article and Find Full Text PDF