Previous studies showed that aphid performance was compromised on Brassica nigra infected by root-lesion nematodes (Pratylenchus penetrans, Pp), but less, or positively influenced by root-knot nematode (Meloidogyne spp.) infection. These experiments were on single-species nematode infections, but roots can be infected naturally with several nematode species simultaneously.
View Article and Find Full Text PDFIn wounded leaves, four 13-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and mutant plants.
View Article and Find Full Text PDFPlant and soil biodiversity can have significant effects on herbivore resistance mediated by plant metabolites. Here, we disentangled the independent effects of plant diversity and soil legacy on constitutive and herbivore-induced plant metabolomes of three plant species in two complementary microcosm experiments. First, we grew plants in sterile soil with three different plant diversity levels.
View Article and Find Full Text PDFJasmonates (JAs), including jasmonic acid (JA) and its biologically active derivative JA-Ile, are lipid-derived plant signaling molecules. They govern plant responses to stresses, such as wounding and insect herbivory. Wounding elicits a rapid increase of JA and JA-Ile levels as well as the expression of JAR1, coding for the enzyme involved in JA-Ile biosynthesis.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2023
Leaf scald caused by the bacteria Xanthomonas albilineans is one of the major concerns to sugarcane production. To breed for resistance, mechanisms underlying plant-pathogen interaction need deeper investigations. Herein, we evaluated sugarcane defense responses against X.
View Article and Find Full Text PDFIntroduction: Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses.
Objectives: In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS).
Ethylene (ET) controls many facets of plant growth and development under abiotic and biotic stresses. MtEIN2, as a critical element of the ET signaling pathway, is essential in biotic interactions. However, the role of MtEIN2 in responding to abiotic stress, such as combined nutrient deficiency, is less known.
View Article and Find Full Text PDFIntegrative taxonomy is a fundamental part of biodiversity and combines traditional morphology with additional methods such as DNA sequencing or biochemistry. Here, we aim to establish untargeted metabolomics for use in chemotaxonomy. We used three thallose liverwort species , , and (order Marchantiales, Ricciaceae) with (order Marchantiales, Lunulariacea) as an outgroup.
View Article and Find Full Text PDFspecies grown for pepper production suffer severely from thrips damage, urging the identification of natural resistance. Resistance levels are commonly assessed on leaves. However, plants are flower-bearing during most of the production season, and thrips also feed on pollen and flower tissues.
View Article and Find Full Text PDFPlants influence numerous soil biotic factors that can alter the performance of later growing plants-defined as plant-soil feedback (PSF). Here, we investigate whether PSF effects are linked with the temporal changes in root exudate diversity and the rhizosphere microbiome of two common grassland species (Holcus lanatus and Jacobaea vulgaris). Both plant species were grown separately establishing conspecific and heterospecific soils.
View Article and Find Full Text PDFSolanum dulcamara primary and adventitious roots showed qualitative and quantitative differences in their steroidal glycosides profile. This opened new venues to evaluate the bioactivity of these molecules in belowground ecosystems. The Solanum genus is characterized by the presence of steroidal glycosides (SGs) that confer herbivore resistance and serve as drug precursors in the pharmaceutical industry.
View Article and Find Full Text PDFThe measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (β-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention.
View Article and Find Full Text PDFArbuscular mycorrhizal (AM) symbiosis modulates plant-herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms.
View Article and Find Full Text PDFLike aboveground herbivores, belowground herbivores are confronted with multiple plant defense mechanisms including complex chemical cocktails in plant tissue. Roots and shoots of Brassicaceae plants contain the two-component glucosinolate (GSL)-myrosinase defense system. Upon cell damage, for example by herbivore feeding, toxic and pungent isothiocyanates (ITCs) can be formed.
View Article and Find Full Text PDFNitrogen (N) is a main nutrient limiting plant growth in most terrestrial ecosystems, but so far it remains unknown which role plant N uptake plays for the positive relationship between species richness and productivity. An in situN labeling experiment was carried out by planting four subtropical tree species (i.e.
View Article and Find Full Text PDFBelowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oilseed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate.
View Article and Find Full Text PDFForest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels.
View Article and Find Full Text PDFRoot mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development.
View Article and Find Full Text PDFShoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita.
View Article and Find Full Text PDFStudies on plant-mediated interactions between root parasitic nematodes and aboveground herbivores are rapidly increasing. However, outcomes for the interacting organisms vary, and the mechanisms involved remain ambiguous. We hypothesized that the impact of root infection by the root-knot nematode Meloidogyne incognita on the performance of the aboveground caterpillar Spodoptera exigua is modulated by the nematode's infection cycle.
View Article and Find Full Text PDFClimate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant-insect interactions.
View Article and Find Full Text PDFClimate change is expected to pose a global threat to forest health by intensifying extreme events like drought and insect attacks. Carbon allocation is a fundamental process that determines the adaptive responses of long-lived late-maturing organisms like trees to such stresses. However, our mechanistic understanding of how trees coordinate and set allocation priorities among different sinks (e.
View Article and Find Full Text PDF