Publications by authors named "Nicole M Samuels"

Copper, a mediator of redox chemistries in biology, is often found in enzymes that bind and reduce dioxygen. Among these, the copper amine oxidases catalyze the oxidative deamination of primary amines utilizing a type(II) copper center and 2,4,5-trihydroxyphenylalanine quinone (TPQ), a covalent cofactor derived from the post-translational modification of an active site tyrosine. Previous studies established the dependence of TPQ biogenesis on Cu(II); however, the dependence of cofactor formation on the biologically relevant Cu(I) ion has remained untested.

View Article and Find Full Text PDF

Copper amine oxidase (CAO) is a dual-functioning enzyme that catalyzes the biosynthesis of a self-derived coenzyme and subsequent oxidative deamination of primary amines. The organic cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), is generated from the post-translational modification of an active site tyrosine (Y405) in a reaction shown to be dependent on both molecular oxygen and a mononuclear copper center. Previous investigations of Cu(II)-dependent cofactor formation in the Hansenula polymorpha amine oxidase (HPAO) provided evidence for the coordination of the precursor tyrosine in forming a ligand-to-metal charge transfer complex as a means of activating the tyrosyl ring for direct attack by triplet-state dioxygen.

View Article and Find Full Text PDF

All Haemophilus ducreyi strains examined contain a lipooligosaccharide (LOS) consisting of a single but variable branch oligosaccharide that emanates off the first heptose (Hep-I) of a conserved Hep(3)-phosphorylated 3-deoxy-D-manno-octulosonic acid-lipid A core. In a previous report, identification of tandem genes, lbgA and lbgB, that are involved in LOS biosynthesis was described (Stevens et al., Infect.

View Article and Find Full Text PDF

The lipooligosaccharide (LOS) of Haemophilus influenzae contains sialylated glycoforms, and a sialyltransferase, Lic3A, has been previously identified. We report evidence for two additional sialyltransferases, SiaA, and LsgB, that affect N-acetyllactosamine containing glycoforms. Mutations in genes we have designated siaA and lsgB affected only the sialylated glycoforms containing N-acetylhexosamine.

View Article and Find Full Text PDF