Micro Abstract: This retrospective observational study assessed real-world treatment patterns and clinical outcomes among first-line MSI-H/dMMR metastatic colorectal cancer patients. Of 150 patients in the study cohort, 38.7% were treated with chemotherapy and 61.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
August 2022
Despite new therapeutic options, advanced gastric cancer remains associated with a poor prognosis compared with other cancers. Recent gains in the treatment of gastric cancer were accompanied by the identification of novel biomarkers associated with various cellular pathways and corresponding diagnostic technologies. It is expected that the standardization of clinical workflow and technological refinements in biomarker assessment will support greater personalization and further improve treatment outcomes.
View Article and Find Full Text PDFEndothelial cell (EC) branching is critically dependent upon the dynamic nature of the microtubule (MT) cytoskeleton. Extracellular matrix (ECM) mechanosensing is a prominent mechanism by which cytoskeletal reorganization is achieved; yet how ECM-induced signaling is able to target cytoskeletal reorganization intracellularly to facilitate productive EC branching morphogenesis is not known. Here, we tested the hypothesis that the composition and density of the ECM drive the regulation of MT growth dynamics in ECs by targeting the MT stabilizing protein, cytoplasmic linker associated protein 1 (CLASP1).
View Article and Find Full Text PDFCompliance and dimensionality mechanosensing, the processes by which cells sense the physical attributes of the extracellular matrix (ECM), are known to drive cell branching and shape change largely through a myosin-II-mediated reorganization of the actin and microtubule (MT) cytoskeletons. Subcellular regulation of MT dynamics is spatially controlled through a Rac1-Aurora-A kinase pathway that locally inhibits the MT depolymerizing activity of mitotic centromere-associated kinesin (MCAK), thereby promoting leading-edge MT growth and cell polarization. These results suggest that the regulation of MT growth dynamics is intimately linked to physical engagement of the cell with the ECM.
View Article and Find Full Text PDF