In the primary visual cortex (V1) inhibitory interneurons form a local circuit with excitatory pyramidal cells to produce distinct receptive field properties. Parvalbumin-expressing interneurons (Pvalb+) are the most common subclass of V1 interneurons, and studies of orientation tuning indicate they shape pyramidal stimulus selectivity by balancing excitation with inhibition relative to the spike threshold. The iceberg effect, where subthreshold responses have broader tuning than spiking responses, predicts that other receptive field properties besides orientation tuning should also be affected by this balance mediated by Pvalb+ cells.
View Article and Find Full Text PDFInterneurons are critical for information processing in the cortex. In vitro optogenetic studies in mouse primary visual cortex (V1) have sketched the connectivity of a local neural circuit comprising excitatory pyramidal neurons and distinct interneuron subtypes that express parvalbumin (Pvalb+), somatostatin (SOM+), or vasoactive intestinal peptide (VIP+). However, in vivo studies focusing on V1 orientation tuning have ascribed discrepant computational roles to specific interneuron subtypes.
View Article and Find Full Text PDF