Publications by authors named "Nicole M Fiorellino"

Historical applications of manures and fertilizers at rates exceeding crop P removal in the Mid-Atlantic region (United States) have resulted in decades of increased water quality degradation from P losses in agricultural runoff. As such, many growers in this region face restrictions on future P applications. An improved understanding of the fate, transformations, and availability of P is needed to manage P-enriched soils.

View Article and Find Full Text PDF

is a fruiting plant that has the potential of becoming the next-generation superfood. The fruit contains high concentrations of flavonoids, polyphenols, and anthocyanins, which are known to be powerful antioxidants. The fruit is regarded for its potential to treat oxidative stress diseases like cancer.

View Article and Find Full Text PDF

In this study we conducted a sensitivity and uncertainty analysis using the Annual P Loss Estimator (APLE) model focusing on model predictions of soil test phosphorus (STP). We calculated and evaluated the sensitivity coefficients of predicted STP and changes in STP using 1- and 10-yr simulations with and without P application. We also compared two methods for estimating prediction uncertainties: first-order variance approximation (FOVA) and Monte Carlo simulation (MCS).

View Article and Find Full Text PDF

Agricultural nutrient management is an issue due to P loss from fields and water quality degradation. This is especially true in watersheds where a history of P application in excess of crop needs has resulted in elevated soil P (legacy P). As practices and policy are implemented in such watersheds to reduce P loss, information is needed on time required to draw down soil P and how much P loss can be reduced by drawdown.

View Article and Find Full Text PDF

The Phosphorus (P) Index was developed to provide a relative ranking of agricultural fields according to their potential for P loss to surface water. Recent efforts have focused on updating and evaluating P Indices against measured or modeled P loss data to ensure agreement in magnitude and direction. Following a recently published method, we modified the Maryland P Site Index (MD-PSI) from a multiplicative to a component index structure and evaluated the MD-PSI outputs against P loss data estimated by the Annual P Loss Estimator (APLE) model, a validated, field-scale, annual P loss model.

View Article and Find Full Text PDF

Phosphorus (P) Index evaluations are critical to advancing nutrient management planning in the United States. However, most assessments until now have focused on the risks of P losses in surface runoff. In artificially drained agroecosystems of the Atlantic Coastal Plain, subsurface flow is the predominant mode of P transport, but its representation in most P Indices is often inadequate.

View Article and Find Full Text PDF