Publications by authors named "Nicole M Braunscheidel"

The task of computing wavefunctions that are accurate, yet simple enough mathematical objects to use for reasoning, has long been a challenge in quantum chemistry. The difficulty in drawing physical conclusions from a wavefunction is often related to the generally large number of configurations with similar weights. In Tensor Product Selected Configuration Interaction (TPSCI), we use a locally correlated tensor product state basis, which has the effect of concentrating the weight of a state onto a smaller number of physically interpretable degrees of freedom.

View Article and Find Full Text PDF

In a recent paper [, 6098], we introduced a new approach for accurately approximating full CI ground states in large electronic active-spaces called Tensor Product Selected CI (TPSCI). In TPSCI, a large orbital active space is first partitioned into disjoint sets (clusters) for which the exact, local many-body eigenstates are obtained. Tensor products of these locally correlated many-body states are taken as the basis for the full, global Hilbert space.

View Article and Find Full Text PDF

The separation of nitrogen and oxygen gases is considered as a very challenging process, since both O and N are nonpolar molecules with similar kinetic diameters. Electronic structure theory can provide a fundamental understanding of effects that can lead to selective binding of nitrogen or oxygen gas for the development of novel separation processes. Boranes can bind dinitrogen through a dative bond, where the boron acts as a σ acceptor and back-donates through π orbitals.

View Article and Find Full Text PDF