Mol Ther Nucleic Acids
September 2018
Clinical translation of small interfering RNA (siRNA) nanocarriers is hindered by limited knowledge regarding the parameters that regulate interactions between nanocarriers and biological systems. To address this, we investigated the influence of polycation-based nanocarrier architecture on intracellular siRNA delivery. We compared the cellular interactions of two polycation-based siRNA carriers that have similar size and surface charge but different siRNA orientation: (1) polyethylenimine-coated spherical nucleic acids (PEI-SNAs), in which polyethylenimine is wrapped around a spherical nucleic acid core containing radially oriented siRNA and (2) randomly assembled polyethylenimine-siRNA polyplexes that lack controlled architecture.
View Article and Find Full Text PDFRNA interference (RNAi)-based gene regulation has recently emerged as a promising strategy to silence genes that drive disease progression. RNAi is typically mediated by small interfering ribonucleic acids (siRNAs), which, upon delivery into the cell cytoplasm, trigger degradation of complementary messenger RNA molecules to halt production of their encoded proteins. While RNAi has enormous clinical potential, its in vivo utility has been hindered because siRNAs are rapidly degraded by nucleases, cannot passively enter cells, and are quickly cleared from the bloodstream.
View Article and Find Full Text PDF