Publications by authors named "Nicole L Jansing"

Many lung diseases result from a failure of efficient regeneration of damaged alveolar epithelial cells (AECs) after lung injury. During regeneration, AEC2s proliferate to replace lost cells, after which proliferation halts and some AEC2s transdifferentiate into AEC1s to restore normal alveolar structure and function. Although the mechanisms underlying AEC2 proliferation have been studied, the mechanisms responsible for halting proliferation and inducing transdifferentiation are poorly understood.

View Article and Find Full Text PDF

The gas exchange surface of the lungs is lined by an epithelium consisting of alveolar type (AT) I and ATII cells. ATII cells function to produce surfactant, play a role in host defense and fluid and ion transport, and serve as progenitors. ATI cells are important for gas exchange and fluid and ion transport.

View Article and Find Full Text PDF

During the acute respiratory distress syndrome, epithelial cells, primarily alveolar type (AT) I cells, die and slough off, resulting in enhanced permeability. ATII cells proliferate and spread onto the denuded basement membrane to reseal the barrier. Repair of the alveolar epithelium is critical for clinical recovery; however, mechanisms underlying ATII cell proliferation and spreading are not well understood.

View Article and Find Full Text PDF

The alveolar epithelium consists of squamous alveolar type (AT) I and cuboidal ATII cells. ATI cells cover 95-98% of the alveolar surface, thereby playing a critical role in barrier integrity, and are extremely thin, thus permitting efficient gas exchange. During lung injury, ATI cells die, resulting in increased epithelial permeability.

View Article and Find Full Text PDF