Publications by authors named "Nicole L Habbit"

To overcome the limitations of in vitro two-dimensional (2D) cancer models in mimicking the complexities of the native tumor milieu, three-dimensional (3D) engineered cancer models using biomimetic materials have been introduced to more closely recapitulate the key attributes of the tumor microenvironment. Specifically, for colorectal cancer (CRC), a few studies have developed 3D engineered tumor models to investigate cell-cell interactions or efficacy of anti-cancer drugs. However, recapitulation of CRC cell line phenotypic differences within a 3D engineered matrix has not been systematically investigated.

View Article and Find Full Text PDF

To investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix-inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine-variant castration-resistant (CPRC-ne) or androgen-dependent (ADPC) PCa cells with tumor-supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC-ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells.

View Article and Find Full Text PDF

The development of physiologically relevantcolorectal cancer (CRC) models is vital for advancing understanding of tumor biology. Although CRC patient-derived xenografts (PDXs) recapitulate key patient tumor characteristics and demonstrate high concordance with clinical outcomes, the use of thismodel is costly and low-throughput. Here we report the establishment and in-depth characterization of antissue-engineered CRC model using PDX cells.

View Article and Find Full Text PDF

In this manuscript we report the establishment and characterization of a three-dimensional in vitro, coculture engineered prostate cancer tissue (EPCaT) disease model based upon and informed by our characterization of in vivo prostate cancer (PCa) xenograft tumor stiffness. In prostate cancer, tissue stiffness is known to impact changes in gene and protein expression, alter therapeutic response, and be positively correlated with an aggressive clinical presentation. To inform an appropriate stiffness range for our in vitro model, PC-3 prostate tumor xenografts were established.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongkvbfvaqiq9pngpue3t7cn5siu62hrbp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once