Abnormal aggregation of the α-synuclein protein is a key molecular feature of Parkinson's disease and other neurodegenerative diseases. The precise mechanisms that trigger α-synuclein aggregation are unclear, and it is not known what role aggregation plays in disease pathogenesis. Here we use an in vivo zebrafish model to express several different forms of human α-synuclein and measure its aggregation in presynaptic terminals.
View Article and Find Full Text PDFDevelopment of the vertebrate nervous system requires a precise coordination of complex cellular behaviors and interactions. The use of high resolution in vivo imaging techniques can provide a clear window into these processes in the living organism. For example, dividing cells and their progeny can be followed in real time as the nervous system forms.
View Article and Find Full Text PDFThe global mechanisms that regulate and potentially coordinate cell proliferation & death in developing neural regions are not well understood. In particular, it is not clear how or whether clonal relationships between neural progenitor cells and their progeny influence the growing brain. We have developed an approach using Brainbow in the developing zebrafish to visualize and follow multiple clones of related cells in vivo over time.
View Article and Find Full Text PDFFluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects.
View Article and Find Full Text PDFOxidation of DNA bases, an inevitable consequence of oxidative stress, requires the base excision repair (BER) pathway for repair. Caenorhabditis elegans is a well-established model to study phenotypic consequences and cellular responses to oxidative stress. To better understand how BER affects phenotypes associated with oxidative stress, we characterised the C.
View Article and Find Full Text PDFIntroduction: Neurotoxicity induced by early developmental exposure to volatile anesthetics is a characteristic of organisms across a wide range of species, extending from the nematode C. elegans to mammals. Prevention of anesthetic-induced neurotoxicity (AIN) will rely upon an understanding of its underlying mechanisms.
View Article and Find Full Text PDF