Publications by authors named "Nicole K Maclennan"

Symptomatic glycerol kinase deficiency (GKD) is associated with episodic metabolic and central nervous system deterioration. We report here the first application of weighted gene co-expression network analysis (WGCNA) to investigate a knockout (KO) murine model of a human genetic disease. WGCNA identified networks and key hub transcripts from liver mRNA of glycerol kinase (Gyk) KO and wild-type (WT) mice.

View Article and Find Full Text PDF

Glycerol kinase (GK) is at the interface of fat and carbohydrate metabolism and has been implicated in insulin resistance and type 2 diabetes mellitus. To define GK's role in insulin resistance, we examined gene expression in brown adipose tissue in a glycerol kinase knockout (KO) mouse model using microarray analysis. Global gene expression profiles of KO mice were distinct from wild type with 668 differentially expressed genes.

View Article and Find Full Text PDF

Glycerol kinase deficiency (GKD) is an X-linked inborn error of metabolism with metabolic and neurological crises. Liver shows the highest level of glycerol kinase (GK) activity in humans and mice. Absence of genotype-phenotype correlations in patients with GKD indicates the involvement of modifier genes, including other network partners.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a devastating intestinal disease of premature infants. Although end-stage NEC is characterized histopathologically as extensive necrosis, apoptosis may account for the initial loss of epithelium before full development of disease. We have previously shown that epidermal growth factor (EGF) reduces the incidence of NEC in a rat model.

View Article and Find Full Text PDF

Human and animal studies demonstrate that uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) decrease intestinal growth and lead to both an increased incidence of feeding intolerance and necrotizing enterocolitis. Our objective was to determine the effects of uteroplacental insufficiency upon small intestine growth, histology, gene expression of the apoptosis related proteins Bcl-2, Bax and p53, and caspase-3 activity. For this purpose, we induced uteroplacental insufficiency through bilateral uterine artery ligation on day 19 of gestation in fully anesthetized pregnant Sprague-Dawley rats and harvested pups at term 2 days latter.

View Article and Find Full Text PDF

Uteroplacental insufficiency leads to intrauterine growth retardation (IUGR) and increases the risk of insulin resistance and hypertriglyceridemia in both humans and rats. Postnatal changes in hepatic gene expression characterize the postnatal IUGR rat, despite the transient nature of the initial in utero insult. Phenomena such as DNA methylation and histone acetylation can induce a relatively static reprogramming of gene transcription by altering chromatin infrastructure.

View Article and Find Full Text PDF

Uteroplacental insufficiency causes intrauterine growth retardation (IUGR), which is associated with adult onset diseases such as hypertension. Previous studies demonstrate that growth retardation in humans and rats decreases glomeruli number; however, the molecular mechanisms responsible for this reduction are unknown. Apoptosis plays a key role in renal organogenesis.

View Article and Find Full Text PDF

Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of insulin resistance in humans and rats. Aberrant skeletal muscle lipid metabolism contributes to the pathogenesis of insulin resistance. Peroxisome proliferator-activated receptor-gamma co-activator-1 (PGC-1) is a transcriptional co-activator that affects gene expression of key lipid metabolizing enzymes such as carnitine palmitoyl-transferase I (mCPTI).

View Article and Find Full Text PDF

Milk-borne insulin-like growth factors (IGFs) enhance nutrient absorption in the immature intestine, which is characterized by low levels of glucose oxidation. We therefore hypothesized that feeding a rat milk substitute (RMS) devoid of growth factors to rat pups would lower serum glucose levels relative to dam-fed control rats and that supplementation of RMS with physiological doses of either IGF-I or IGF-II would normalize serum glucose levels via increased jejunal glucose transporter 2 (GLUT2) and high-affinity Na(+)-glucose cotransporter (SGLT1) expression. We found lower serum glucose concentrations in RMS-fed pups; in contrast, serum glucose levels in the IGF-supplemented pups were similar to those of dam-fed controls.

View Article and Find Full Text PDF

Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of type 2 diabetes in humans and rats. Unsuppressed endogenous hepatic glucose production is a common component of the insulin resistance associated with type 2 diabetes. Peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) mediates hepatic glucose production by controlling mRNA levels of glucose-6-phosphatase (G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK), and fructose-1,6-bisphosphatase (FBPase).

View Article and Find Full Text PDF