Classification and sorting of cells using image-activated cell sorting (IACS) systems can bring significant insight to biomedical sciences. Incorporating deep learning algorithms into IACS enables cell classification and isolation based on complex and human-vision uninterpretable morphological features within a heterogeneous cell population. However, the limited capabilities and complicated implementation of deep learning-assisted IACS systems reported to date hinder the adoption of the systems for a wide range of biomedical research.
View Article and Find Full Text PDFSingle-cell RNA-Sequencing has led to many novel discoveries such as the detection of rare cell populations, microbial populations, and cancer mutations. The quality of single-cell transcriptomics relies heavily on sample preparation and cell sorting techniques that best preserve RNA quality while removing dead cells or debris prior to cDNA generation and library preparation. Magnetic bead cell enrichment is a simple process of cleaning up a sample but can only separate on a single-criterion.
View Article and Find Full Text PDF