Publications by authors named "Nicole Henning"

Cancer metastasis is a major contributor to patient morbidity and mortality, yet the factors that determine the organs where cancers can metastasize are incompletely understood. In this study, we quantify the absolute levels of over 100 nutrients available across multiple tissues in mice and investigate how this relates to the ability of breast cancer cells to grow in different organs. We engineered breast cancer cells with broad metastatic potential to be auxotrophic for specific nutrients and assessed their ability to colonize different organs.

View Article and Find Full Text PDF

Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation.

View Article and Find Full Text PDF
Article Synopsis
  • Metastases originate from specific subsets of cancer cells that spread from the primary tumor, with their ability to thrive in new locations being impacted by genetic and epigenetic changes.
  • Certain types of cancers tend to consistently metastasize to particular tissues, indicating that the characteristics of the primary tumor play a role in determining metastatic sites.
  • Research shows that both primary and metastatic pancreatic tumors share metabolic traits and that cancer cells prefer to grow in their original site rather than in new metastatic locations, highlighting the influence of the tumor's tissue of origin on its growth and spread.
View Article and Find Full Text PDF

Cancer therapy research is of high interest because of the persistence and mortality of the disease and the side effects of traditional therapeutic methods, while often multimodal treatments are necessary based on the patient's needs. The development of less invasive modalities for recurring treatment cycles is thus of critical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation, by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation.

View Article and Find Full Text PDF