Publications by authors named "Nicole Hauptmann"

The layer-by-layer (LbL) self-assembly technique is an effective method to immobilize components of the extracellular matrix (ECM) such as collagen and heparin onto, e.g., implant surfaces/medical devices with the aim of forming polyelectrolyte multilayers (PEMs).

View Article and Find Full Text PDF

An aging population and injury-related damage of the bone substance lead to an increasing need of innovative materials for the regeneration of osteochondral defects. Biodegradable polymers form the basis for suitable artificial implants intended for bone replacement or bone augmentation. The great advantage of these structures is the site-specific implant design, which leads to a considerable improvement in patient outcomes and significantly reduced post-operative regeneration times.

View Article and Find Full Text PDF

In the context of an aging population, unhealthy Western lifestyle, and the lack of an optimal surgical treatment, deep osteochondral defects pose a great challenge for the public health system. Biodegradable, biomimetic scaffolds seem to be a promising solution. In this study we investigated the biocompatibility of porous poly-((D,L)-lactide-ε-caprolactone)dimethacrylate (LCM) scaffolds in contrast to compact LCM scaffolds and blank cell culture plastic.

View Article and Find Full Text PDF

Introduction: Bone tissue regeneration requires a three-dimensional biological setting. An ideal scaffold should enable cell proliferation and differentiation by mimicking structure and mechanical properties of the compromised defect as well as carrying growth factors. Two-photon polymerization (2PP) allows the preparation of 3D structures with a micrometric resolution.

View Article and Find Full Text PDF

In tissue engineering (TE), the establishment of cell targeting materials, which mimic the conditions of the physiological extracellular matrix (ECM), seems to be a mission impossible without advanced materials and fabrication techniques. With this in mind we established a toolbox based on (D,L)-lactide--caprolactone methacrylate (LCM) copolymers in combination with a nano-micromaskless lithography technique, the two-photon polymerization (2-PP) to mimic the hierarchical structured and complex milieu of the natural ECM. To demonstrate the versatility of this toolbox, we choose two completely different application scenarios in bone and tumor TE to show the high potential of this concept in therapeutic and diagnostic application.

View Article and Find Full Text PDF

Alternative delivery entities are desirable in immunotherapies in which polyplexes are widely formed by electrostatic interactions to induce cellular uptake processes for bioactive molecules. In our study, biocompatible Ni(II)-nitrilo(triacetic acid)-modified poly(ethylene imine)-maltose (Ni-NTA-DG) is realized and evaluated as complexation agent against His-tagged peptides using fluorescence polarization and dynamic light scattering. The polyplexes are stable until a pH of 6.

View Article and Find Full Text PDF

Smart nanocarriers are created based on a bi-functional hetero-initiator for RAFT and ATRP technique, bi-functionalizing mesoporous silica nanoparticles with two polymer types. The pH-dependent behavior of PDEAEMA as the gatekeeper polymer is verified by electrokinetic measurements and a controlled release behavior is demonstrated using doxorubicin as the drug.

View Article and Find Full Text PDF