Publications by authors named "Nicole Hartig"

SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2.

View Article and Find Full Text PDF

The PAF complex (PAFC) coordinates transcription elongation and mRNA processing and its CDC73/parafibromin subunit functions as a tumour suppressor. The NF2/Merlin tumour suppressor functions both at the cell cortex and nucleus and is a key mediator of contact inhibition but the molecular mechanisms remain unclear. In this study we have used affinity proteomics to identify novel Merlin interacting proteins and show that Merlin forms a complex with multiple proteins involved in RNA processing including the PAFC and the CHD1 chromatin remodeller.

View Article and Find Full Text PDF

Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome.

View Article and Find Full Text PDF

Targeted inhibition of the ERK-MAPK pathway, upregulated in a majority of human cancers, has been hindered in the clinic by drug resistance and toxicity. The MRAS-SHOC2-PP1 (SHOC2 phosphatase) complex plays a key role in RAF-ERK pathway activation by dephosphorylating a critical inhibitory site on RAF kinases. Here we show that genetic inhibition of SHOC2 suppresses tumorigenic growth in a subset of KRAS-mutant NSCLC cell lines and prominently inhibits tumour development in autochthonous murine KRAS-driven lung cancer models.

View Article and Find Full Text PDF

Dephosphorylation of the inhibitory "S259" site on RAF kinases (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. The MRAS GTPase, a close relative of RAS oncoproteins, interacts with SHOC2 and protein phosphatase 1 (PP1) to form a heterotrimeric holoenzyme that dephosphorylates this S259 RAF site. MRAS and SHOC2 function as PP1 regulatory subunits providing the complex with striking specificity against RAF.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet.

View Article and Find Full Text PDF

SHOC2 is mutated in Noonan syndrome and plays a key role in the activation of the ERK-MAPK pathway, which is upregulated in the majority of human cancers. SHOC2 functions as a PP1-regulatory protein and as an effector of MRAS. Here we show that SHOC2 and MRAS form a complex with SCRIB, a polarity protein with tumor suppressor properties.

View Article and Find Full Text PDF