Background: House Dust Mite (HDM) is the most common indoor allergen triggering allergic symptoms. First-line pharmacotherapy treatment is recommended in international guidelines, while the avoidance of allergens represents a still unmet guideline principle. AM-301 is a new non-pharmacological nasal spray that creates a protective gel-like barrier on the nasal mucosa, preventing the contact with the allergens.
View Article and Find Full Text PDFIntroduction: Symptoms of allergic rhinitis can be reduced by nonpharmacological nasal sprays that create a barrier between allergens and the nasal mucosa. A new nasal spray (AM-301) containing the clay mineral bentonite was tested for its ability to reduce symptoms of grass pollen.
Methods: This open-label, crossover, noninferiority trial compared the efficacy and safety of AM-301 to that of hydroxypropyl methylcellulose (HPMC; Nasaleze® Allergy Blocker), an established barrier method.
Background And Purpose: Non-homologous end-joining (NHEJ) and homologous recombination (HR) contribute to the repair of irradiation-induced DNA double-strand breaks (DSBs). We investigated the impact of the two major DSB repair machineries for cellular survival of human tumor cells in response to proton- and photon-irradiation.
Materials And Methods: DNA damage repair and cell survival were analyzed in wildtype, HR- and NHEJ-repair-compromised and pharmacologically DNA-PKcs-inhibited human tumor cells in response to clinically relevant, low-linear energy transfer proton- and 200-keV photon-irradiation.
Background: Companion animals like dogs frequently develop tumors with age and similarly to human malignancies, display interpatient tumoral heterogeneity. Tumors are frequently characterized with regard to their mutation spectra, changes in gene expression or protein levels. Among others, these changes affect proteins involved in the DNA damage response (DDR), which served as a basis for the development of numerous clinically relevant cancer therapies.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2014
Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation.
Methods And Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons.
Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks.
Human DNA polymerase (pol) λ functions in base excision repair and non-homologous end joining. We have previously shown that DNA pol λ is involved in accurate bypass of the two frequent oxidative lesions, 7,8-dihydro-8-oxoguanine and 1,2-dihydro-2-oxoadenine during the S phase. However, nothing is known so far about the relationship of DNA pol λ with the S phase DNA damage response checkpoint.
View Article and Find Full Text PDFCombined radiochemotherapy treatment modalities are in use for many indications and therefore of high interest. Even though a combined modality in clinical use is often driven by pragmatic aspects, mechanistic preclinical-based concepts of interaction are of importance in order to translate and implement an optimal combination and scheduling of two modalities into the clinics. The use of microtubule stabilising agents is a promising strategy for anti-cancer therapy as a part of combined treatment modality with ionising radiation.
View Article and Find Full Text PDF