Over the last few years an intense activity in the areas of advanced microscopy and quantitative cell biology has put the focus on the morphogenetic events that shape embryos. The interest in these processes is taking place against the backdrop of genomic studies, particularly of global patterns of gene expression at the level of single cells, which cannot fully account for the way cells build tissues and organs. Here we discuss the need to integrate the activity of genes with that of cells and propose the need to develop a framework, based on cellular processes and cell interactions, that parallels that which has been created for gene activity in the form of Gene Regulatory Networks (GRNs).
View Article and Find Full Text PDFCurr Opin Genet Dev
August 2018
We review recent developments in the understanding of the biomechanics of apicomedial actomyosin and how its contractility can tense and deform tissue. Myosin pulses are driven by a biochemical oscillator but how they are modulated by the mechanical context remains unclear. On the other hand, the emergence of tissue behaviour is highly dependent on the material properties of actin, on how strongly components are connected and on the influence of neighbouring tissues.
View Article and Find Full Text PDFIn this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure.
View Article and Find Full Text PDFWe have investigated how cell contractility and adhesion are functionally integrated during epithelial morphogenesis. To this end, we have analysed the role of α-Catenin, a key molecule linking E-Cadherin-based adhesion and the actomyosin cytoskeleton, during Drosophila embryonic dorsal closure, by studying a newly developed allelic series. We find that α-Catenin regulates pulsatile apical contraction in the amnioserosa, the main force-generating tissue driving closure of the embryonic epidermis.
View Article and Find Full Text PDFBackground: Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.
View Article and Find Full Text PDFPulsatile actomyosin contractility driving cell shape oscillations is a common feature of actomyosin networks present in a variety of tissues undergoing morphogenetic processes. The origin of this oscillatory dynamics, how it is stabilized over time to give rise to net cell shape changes and how it is spatially coordinated across a tissue, are questions that have being extensively investigated in recent years. In this work, I review how genetics, cell biology, and quantitative and theoretical approaches have started to give a comprehensive understanding of these problems revealing that both biochemical and mechanical regulation play an important role in the emergence, coordination and stabilization of this activity.
View Article and Find Full Text PDFMechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells.
View Article and Find Full Text PDFDorsal closure (DC) is an essential step during Drosophila development whereby a hole is sealed in the dorsal epidermis and serves as a model for cell sheet morphogenesis and wound healing. It involves the orchestrated interplay of transcriptional networks and dynamic regulation of cell machinery to bring about shape changes, mechanical forces, and emergent properties. Here we provide insight into the regulation of dorsal closure by describing novel autonomous and non-autonomous roles for U-shaped (Ush) in the amnioserosa, the epidermis, and in mediation of communication between the tissues.
View Article and Find Full Text PDFCurr Opin Cell Biol
October 2011
In the past few years, advances in microscopy and quantitative image analysis have lead to a completely new understanding of the processes underlying the cell shape changes and cell rearrangements that drive tissue morphogenesis. In a handful of tissues so far, though the number will surely increase rapidly, it has been shown that cell behaviour is not continuous but proceeds in pulses driven by the contractile activity of dynamic cortical actomyosin networks. The patterns and dynamics of temporary subcellular contractile foci, driven by local increases in actin and myosin, are remarkably similar in disparate tissues.
View Article and Find Full Text PDFHedgehog (Hh) moves from the producing cells to regulate the growth and development of distant cells in a variety of tissues. Here, we have investigated the mechanism of Hh release from the producing cells to form a morphogenetic gradient in the Drosophila wing imaginal disk epithelium. We describe that Hh reaches both apical and basolateral plasma membranes, but the apical Hh is subsequently internalized in the producing cells and routed to the basolateral surface, where Hh is released to form a long-range gradient.
View Article and Find Full Text PDFDuring development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo.
View Article and Find Full Text PDFAlthough developmental biology has been dominated by the genetic analysis of embryonic development, in recent years genetic tools have been combined with new approaches such as imaging of live processes, automated and quantitative image analysis, mechanical perturbation and mathematical modeling, to study the principles underlying the formation of organisms. Here we focus on recent work carried out on Dorsal Closure, a morphogenetic process during Drosophila embryogenesis, to illustrate how this multidisciplinary approach is yielding new and unexpected insights into how cells organize themselves through the activity of their molecular components to give rise to the stereotyped and macroscopic movements observed during development.
View Article and Find Full Text PDFFluctuations in the shape of amnioserosa (AS) cells during Drosophila dorsal closure (DC) provide an ideal system with which to understand contractile epithelia, both in terms of the cellular mechanisms and how tissue behaviour emerges from the activity of individual cells. Using quantitative image analysis we show that apical shape fluctuations are driven by the medial cytoskeleton, with periodic foci of contractile myosin and actin travelling across cell apices. Shape changes were mostly anisotropic and neighbouring cells were often, but transiently, organised into strings with parallel deformations.
View Article and Find Full Text PDFSemin Cell Dev Biol
September 2009
Morphogenesis is the process whereby cells assemble into tissues and organs. Recent studies of this process have revealed heterogeneity of individual cell behaviours that contrasts with the deterministic activity of tissues as a whole. Here we review these observations and suggest that fluctuations and heterogeneities are a central substrate for morphogenesis and that there might exist mechanisms dedicated to the averaging of these fluctuations to ensure robust and reproducible behaviours at the tissue level.
View Article and Find Full Text PDFThe tissues of a developing embryo are simultaneously patterned, moved and differentiated according to an exchange of information between their constituent cells. We argue that these complex self-organizing phenomena can only be fully understood with quantitative mathematical frameworks that allow specific hypotheses to be formulated and tested. The quantitative and dynamic imaging of growing embryos at the molecular, cellular and tissue level is the key experimental advance required to achieve this interaction between theory and experiment.
View Article and Find Full Text PDFThe dynamic reshaping of tissues during morphogenesis results from a combination of individual cell behaviors and collective cell rearrangements. However, a comprehensive framework to unambiguously measure and link cell behavior to tissue morphogenesis is lacking. Here we introduce such a kinematic framework, bridging cell and tissue behaviors at an intermediate, mesoscopic, level of cell clusters or domains.
View Article and Find Full Text PDFHalfway through embryonic development, the epidermis of Drosophila exhibits a gap at the dorsal side covered by an extraembryonic epithelium, the amnioserosa (AS). Dorsal closure (DC) is the process whereby interactions between the two epithelia establish epidermal continuity. Although genetic and biomechanical analysis have identified the AS as a force-generating tissue, we do not know how individual cell behaviours are transformed into tissue movements.
View Article and Find Full Text PDFDynamic interactions between epithelial sheets are a regular feature of morphogenetic processes. Dorsal closure in Drosophila relies on the coordinated movements of two epithelia, the epidermis and the amnioserosa, and provides an excellent model system for a genetic and cell biological approach. Here, we have analyzed the contribution of junctional organization of these epithelia to dorsal closure.
View Article and Find Full Text PDFMorphogens are molecules that spread from localized sites of production, specifying distinct cell outcomes at different concentrations. Members of the Hedgehog (Hh) family of signaling molecules act as morphogens in different developmental systems. If we are to understand how Hh elicits multiple responses in a temporally and spatially specific manner, the molecular mechanism of Hh gradient formation needs to be established.
View Article and Find Full Text PDFThe Hedgehog (Hh) family of morphogenetic proteins has important instructional roles in metazoan development and human diseases. Lipid modified Hh is able to migrate to and program cells far away from its site of production despite being associated with membranes. To investigate the Hh spreading mechanism, we characterized Shifted (Shf) as a component in the Drosophila Hh pathway.
View Article and Find Full Text PDFIn Drosophila, the Polycomb group (PcG) of genes is required for the maintenance of homeotic gene repression during development. Here, we have characterized the Drosophila ortholog of the products of the mammalian Ring1/Ring1A and Rnf2/Ring1B genes. We show that Drosophila Ring corresponds to the Sex combs extra (Sce), a previously described PcG gene.
View Article and Find Full Text PDFThe Hedgehog (Hh) morphogenetic gradient controls multiple developmental patterning events in Drosophila and vertebrates. Patched (Ptc), the Hh receptor, restrains both Hh spreading and Hh signaling. We report how endocytosis regulates the concentration and activity of Hh in the wing imaginal disc.
View Article and Find Full Text PDFIn both sexes, the Drosophila genital disc comprises three segmental primordia: the female genital primordium derived from segment A8, the male genital primordium derived from segment A9 and the anal primordium derived from segments A10-11. Each segmental primordium has an anterior (A) and a posterior (P) compartment, the P cells of the three segments being contiguous at the lateral edges of the disc. We show that Hedgehog (Hh) expressed in the P compartment differentially signals A cells at the AP compartment border and A cells at the segmental border.
View Article and Find Full Text PDFThe genital disc consists of three primordia: the female genital, the male genital and the anal primordia. In individuals of either sex, only one of the two genital primordia grows, whereas the anal primordium develops in both sexes. It is proposed here that the genital disc, which is of ventral origin, is organized in a manner similar to the antennal and leg discs: the expression domains of decapentaplegic (dpp) and wingless (wg) are mostly complementary and abut engrailed (en) expression.
View Article and Find Full Text PDF