Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks.
View Article and Find Full Text PDFRegular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue.
View Article and Find Full Text PDFSubcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism.
View Article and Find Full Text PDFEndurance exercise training is known to reduce risk for a range of complex diseases. However, the molecular basis of this effect has been challenging to study and largely restricted to analyses of either few or easily biopsied tissues. Extensive transcriptome data collected across 15 tissues during exercise training in rats as part of the Molecular Transducers of Physical Activity Consortium has provided a unique opportunity to clarify how exercise can affect tissue-specific gene expression and further suggest how exercise adaptation may impact complex disease-associated genes.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2024
Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity.
View Article and Find Full Text PDFSubcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training.
View Article and Find Full Text PDFMitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks.
View Article and Find Full Text PDFTranscription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and RNA expression across eight rat tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes (DEGs).
View Article and Find Full Text PDFBackground: Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization.
View Article and Find Full Text PDFMicrobiome
January 2018
Background: Profiling of shotgun metagenomic samples is hindered by a lack of unified microbial reference genome databases that (i) assemble genomic information from all open access microbial genomes, (ii) have relatively small sizes, and (iii) are compatible to various metagenomic read mapping tools. Moreover, computational tools to rapidly compile and update such databases to accommodate the rapid increase in new reference genomes do not exist. As a result, database-guided analyses often fail to profile a substantial fraction of metagenomic shotgun sequencing reads from complex microbiomes.
View Article and Find Full Text PDFDroplet interface bilayer (DIB) networks allow for the construction of stimuli-responsive, membrane-based materials. Traditionally used for studying cellular transport phenomena, the DIB technique has proven its practicality when creating structured droplet networks. These structures consist of aqueous compartments capable of exchanging their contents across membranous barriers in a regulated fashion via embedded biomolecules, thus approximating the activity of natural cellular systems.
View Article and Find Full Text PDFCloacibacterium normanense is a Gram-negative bacterium recovered from untreated human wastewater. Given its high abundance in wastewater and its apparent absence in human stool, it may contribute to biological phosphate removal. Here, we perform a whole-genome sequence of C.
View Article and Find Full Text PDF