Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.
View Article and Find Full Text PDFThermal annealing is the most common postdeposition technique used to crystallize antimony selenide (SbSe) thin films. However, due to slow processing speeds and a high energy cost, it is incompatible with the upscaling and commercialization of SbSe for future photovoltaics. Herein, for the first time, a fast-annealing technique that uses millisecond light pulses to deliver energy to the sample is adapted to cure thermally evaporated SbSe films.
View Article and Find Full Text PDFResearch efforts aimed at improving the crystal quality of solution-processed CuZnSn(S,Se) (CZTSSe) absorbers have largely employed delicate pre- and postprocessing strategies, such as multistep selenization, heat treatment in mixed chalcogen atmospheres, and multinary extrinsic doping that are often complex and difficult to reproduce. On the other hand, understanding and tuning chemical interactions in precursor inks prior to the thin-film deposition have received significantly less attention. Herein, we show for the first time how the complexation of metallic and chalcogen precursors in solution have a stark influence on the crystallization and optoelectronic quality of CZTSSe absorbers.
View Article and Find Full Text PDFElectrochromic (EC) glass has the potential to significantly improve energy efficiency in buildings by controlling the amount of light and heat that the building exchanges with its exterior. However, the development of EC materials is still hindered by key challenges such as slow switching time, low coloration efficiency, short cycling lifetime, and material degradation. Metal doping is a promising technique to enhance the performance of metal oxide-based EC materials, where adding a small amount of metal into the host material can lead to lattice distortion, a variation of oxygen vacancies, and a shorter ion transfer path during the insertion and de-insertion process.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2022
A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS, MoSe, and MoTe are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX series as 5.
View Article and Find Full Text PDFHealthcare in general and dialysis care in particular are contributing to resource consumption and, thus, have a notable environmental footprint. Dialysis is a life-saving therapy but it entails the use of a broad range of consumables generating waste, and consumption of water and energy for the dialysis process. Various stakeholders in the healthcare sector are called upon to develop and to take measures to save resources and to make healthcare and dialysis more sustainable.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
The improvement of antimony selenide solar cells by short-term air exposure is explained using complementary cell and material studies. We demonstrate that exposure to air yields a relative efficiency improvement of n-type SbSe solar cells of ca. 10% by oxidation of the back surface and a reduction in the back contact barrier height (measured by ) from 320 to 280 meV.
View Article and Find Full Text PDFThe van der Waals material GeSe is a potential solar absorber, but its optoelectronic properties are not yet fully understood. Here, through a combined theoretical and experimental approach, the optoelectronic and structural properties of GeSe are determined. A fundamental absorption onset of 1.
View Article and Find Full Text PDFThe mussel-inspired properties of dopamine have attracted immense scientific interest for surface modification of nanoparticles due to the high potential of dopamine functional groups to increase the adhesion of nanoparticles to flat surfaces. Here, we report for the first time a novel type of inhibitor-loaded nanocontainer using polydopamine (PDA) as a pH-sensitive gatekeeper for mesoporous silica nanoparticles (MSNs). The encapsulated inhibitor (benzotriazole) was loaded into MSNs at neutral pH, demonstrating fast release in an acidic environment.
View Article and Find Full Text PDF