Publications by authors named "Nicole Fernandez Tejero"

In the context of forensic casework, it is imperative to both establish a DNA profile from biological specimens and accurately identify the specific bodily fluid source. To achieve this, DNA methylation markers have been developed for the differentiation of blood, semen, vaginal epithelial secretions, and saliva samples. Saliva, alternatively referred to as oral fluid, is recognized for its heterogeneous cellular composition, characterized by a mixture of epithelial, leukocytic, and bacterial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Food-borne illnesses can occur from contaminants in agricultural products, prompting the need for effective testing methods.
  • The study utilized nanoplate digital PCR (dPCR), which segments the PCR mixture into over 8 million partitions for precise detection of individual DNA molecules.
  • Using this method, strawberries contaminated with animal feces were tested, achieving a detection limit of 250 fg/uL, highlighting dPCR's potential for rapid and sensitive detection of contaminated produce.
View Article and Find Full Text PDF

In this study, a quick microwave-based treatment was developed as a front end for DNA analysis of forensic samples. The effect of microwave treatment is to cause cell disruption which can improve the release of DNA during direct PCR as well as with extraction methods. Exposure to microwave preprocessing improved the quality of rapid genotyping, particularly when used with low level samples.

View Article and Find Full Text PDF

The determination of tissue type is important when reconstructing a crime scene as skin cells may indicate innocent contact, whereas other types of cells, such as blood and semen, may indicate foul play. Up to now, there has been no specific DNA methylation-based marker to distinguish skin cell DNA from other body fluids. The goal of this study is to develop a DNA methylation-based assay to detect and identify skin cells collected at forensic crime scenes for use in DNA typing.

View Article and Find Full Text PDF

The recent development of small, single-amplicon-based benchtop systems for pyrosequencing has opened up a host of novel procedures for applications in forensic science. Pyrosequencing is a sequencing by synthesis technique, based on chemiluminescent inorganic pyrophosphate detection. This review explains the pyrosequencing workflow and illustrates the step-by-step chemistry, followed by a description of the assay design and factors to keep in mind for an exemplary assay.

View Article and Find Full Text PDF

DNA methylation has become one of the most useful biomarkers for age prediction and body fluid identification in the forensic field. Therefore, several assays have been developed to detect age-associated and body fluid-specific DNA methylation changes. Among the many methods developed, SNaPshot-based assays should be particularly useful in forensic laboratories, as they permit multiplex analysis and use the same capillary electrophoresis instrumentation as STR analysis.

View Article and Find Full Text PDF