Therapeutic development for skeletal muscle diseases is challenged by a lack of ex vivo models that recapitulate human muscle physiology. Here, we engineered 3D human skeletal muscle tissue in the Biowire II platform that could be maintained and electrically stimulated long-term. Increasing differentiation time enhanced myotube formation, modulated myogenic gene expression, and increased twitch and tetanic forces.
View Article and Find Full Text PDFThe development of patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offers an opportunity to study genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM), one of the most common inherited cardiac diseases. However, immaturity of the iPSC-CMs and the lack of a multicellular composition pose concerns over its faithfulness in disease modeling and its utility in developing mechanism-specific treatment. The Biowire platform was used to generate 3D engineered cardiac tissues (ECTs) using HCM patient-derived iPSC-CMs carrying a β-myosin mutation (MYH7-R403Q) and its isogenic control (WT), withal ECTs contained healthy human cardiac fibroblasts.
View Article and Find Full Text PDFThe role of C-type natriuretic peptide (CNP) in the regulation of cardiac function in humans remains to be established as previous investigations have been confined to animal model systems. Here, we used well-characterized engineered cardiac tissues (ECTs) generated from human stem cell-derived cardiomyocytes and fibroblasts to study the acute effects of CNP on contractility. Application of CNP elicited a positive inotropic response as evidenced by increases in maximum twitch amplitude, maximum contraction slope and maximum calcium amplitude.
View Article and Find Full Text PDFActivin A has been linked to cardiac dysfunction in aging and disease, with elevated circulating levels found in patients with hypertension, atherosclerosis, and heart failure. Here, we investigated whether Activin A directly impairs cardiomyocyte (CM) contractile function and kinetics utilizing cell, tissue, and animal models. Hydrodynamic gene delivery-mediated overexpression of Activin A in wild-type mice was sufficient to impair cardiac function, and resulted in increased cardiac stress markers (N-terminal pro-atrial natriuretic peptide) and cardiac atrophy.
View Article and Find Full Text PDFCardiac contractility modulation (CCM) is a medical device therapy whereby non-excitatory electrical stimulations are delivered to the myocardium during the absolute refractory period to enhance cardiac function. We previously evaluated the effects of the standard CCM pulse parameters in isolated rabbit ventricular cardiomyocytes and 2D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers, on flexible substrate. In the present study, we sought to extend these results to human 3D microphysiological systems to develop a robust model to evaluate various clinical CCM pulse parameters .
View Article and Find Full Text PDFTo develop therapeutics for cardiovascular disease, especially heart failure, translational models for assessing cardiac contractility are necessary for preclinical target validation and lead optimization. The availability of stem cell-derived cardiomyocytes (SC-CM) has generated a great opportunity in developing new in-vitro models for assessing cardiac contractility. However, the immature phenotype of SC-CM is a well-recognized limitation in inotropic evaluation, especially regarding the lack of or diminished positive inotropic response to β-adrenergic agonists.
View Article and Find Full Text PDFRecent advances in techniques to differentiate human induced pluripotent stem cells (hiPSCs) hold the promise of an unlimited supply of human derived cardiac cells from both healthy and disease populations. That promise has been tempered by the observation that hiPSC-derived cardiomyocytes (hiPSC-CMs) typically retain a fetal-like phenotype, raising concern about the translatability of the in vitro data obtained to drug safety, discovery, and development studies. The Biowire II platform was used to generate 3D engineered cardiac tissues (ECTs) from hiPSC-CMs and cardiac fibroblasts.
View Article and Find Full Text PDFOrgan-on-a-chip systems have the potential to revolutionize drug screening and disease modeling through the use of human stem cell-derived cardiomyocytes. The predictive power of these tissue models critically depends on the functional assembly and maturation of human cells that are used as building blocks for organ-on-a-chip systems. To resemble a more adult-like phenotype on these heart-on-a-chip systems, the surrounding micro-environment of individual cardiomyocyte needs to be controlled.
View Article and Find Full Text PDFTissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca transients, as well as endpoint assessments of action potentials and conduction velocity.
View Article and Find Full Text PDFAnimal models have been instrumental in providing insight into the molecular basis of disease. While such information has been successfully applied to the study of human disease, this translation would be significantly strengthened by the availability of models based on human cells. This would be particularly important for cardiovascular disease, as the physiology of human cardiomyocytes (CMs) differs significantly from rodents.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2016
There is a clinical need for new, more effective treatments for chronic wounds in diabetic patients. Lack of epithelial cell migration is a hallmark of nonhealing wounds, and diabetes often involves endothelial dysfunction. Therefore, targeting re-epithelialization, which mainly involves keratinocytes, may improve therapeutic outcomes of current treatments.
View Article and Find Full Text PDFUnlabelled: Cardiovascular diseases account for the majority of deaths globally and are a significant drain on economic resources. Although heart transplants and left-ventricle assist devices are the solution for some, the best chance for many patients who suffer because of a myocardial infarction, heart failure, or a congenital heart disease may be cell-based regenerative therapies. Such therapies can be divided into two categories: the application of a cell suspension and the implantation of an in vitro engineered tissue construct to the damaged area of the heart.
View Article and Find Full Text PDFWingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states.
View Article and Find Full Text PDFAdv Drug Deliv Rev
January 2016
Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium.
View Article and Find Full Text PDFBackground: Hydrogels are being actively investigated for direct delivery of cells or bioactive molecules to the heart after myocardial infarction (MI) to prevent cardiac functional loss. We postulate that immobilization of the prosurvival angiopoietin-1-derived peptide, QHREDGS, to a chitosan-collagen hydrogel could produce a clinically translatable thermoresponsive hydrogel to attenuate post-MI cardiac remodeling.
Methods And Results: In a rat MI model, QHREDGS-conjugated hydrogel (QHG213H), control gel, or PBS was injected into the peri-infarct/MI zone.
Methods that increase cardiomyocyte survival upon exposure to ischemia, hypoxia and reoxygenation injuries are required to improve the efficacy of cardiac cell therapy and enhance the viability and function of engineered tissues. We investigated the effect of combined hypoxia/NaNO2 pretreatment on rat neonatal cardiomyocyte (CM), cardiac fibroblast, and human embryonic stem cell-derived CM (hESC-CM) survival upon exposure to hypoxia/reoxygenation (H/R) injury in vitro. Cells were pretreated with and without hypoxia and/or various concentrations of NaNO2 for 20 min, then incubated for 2 h under hypoxic conditions, followed by 2 h in normoxia.
View Article and Find Full Text PDFBone loss occurs as a consequence of a variety of diseases as well as from traumatic injuries, and often requires therapeutic intervention. Strategies for repairing and replacing damaged and/or lost bone tissue include the use of biomaterials and medical implant devices with and without osteoinductive coatings. The soluble growth factor angiopoietin-1 (Ang-1) has been found to promote cell adhesion and survival in a range of cell types including cardiac myocytes, endothelial cells and fibroblasts through an integrin-dependent mechanism.
View Article and Find Full Text PDFIn recent years, the development of 3-dimensional engineered heart tissue (EHT) has made large strides forward because of advances in stem cell biology, materials science, prevascularization strategies, and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multifaceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function after cardiac injury.
View Article and Find Full Text PDFCardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternative sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augmenting injured or impaired myocardium, with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds - composed of natural or synthetic biomaterials or decellularized extracellular matrix - that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue; and finally, injectable biomaterials (hydrogels) designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct.
View Article and Find Full Text PDFAdhesion molecule signaling is critical to human pluripotent stem cell (hPSC) survival, self-renewal, and differentiation. Thus, hPSCs are grown as clumps of cells on feeder cell layers or poorly defined extracellular matrices such as Matrigel. We sought to define a small molecule that would initiate adhesion-based signaling to serve as a basis for a defined substrate for hPSC culture.
View Article and Find Full Text PDFLipoprotein(a) (Lp(a)) is an independent risk factor for the development of cardiovascular disease. Vascular smooth muscle cell (SMC) motility and plasticity, functions that are influenced by environmental cues, are vital to adaptation and remodelling in vascular physiology and pathophysiology. Lp(a) is reportedly damaging to SMC function via unknown molecular mechanisms.
View Article and Find Full Text PDFPrevious studies demonstrated the importance of substrate stiffness and topography on the phenotype of many different cell types including fibroblasts. Yet the interaction of these two physical parameters remains insufficiently characterized, in particular for cardiac fibroblasts. Most studies focusing on contact guidance use rigid patterned substrates.
View Article and Find Full Text PDFMacrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other proapoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and Toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36⁻(/)⁻ or Tlr2⁻(/)⁻ mice.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2007
Objectives: The purpose of this study was to identify genetic variants associated with severe coronary artery disease (CAD).
Methods And Results: We used 3 case-control studies of white subjects whose severity of CAD was assessed by angiography. The first 2 studies were used to generate hypotheses that were then tested in the third study.