We used EPR spectroscopy to characterize the structure of RNA duplexes and their internal twist, stretch and bending motions. We prepared eight 20-base-pair-long RNA duplexes containing the rigid spin-label Çm, a cytidine analogue, at two positions and acquired orientation-selective PELDOR/DEER data. By using different frequency bands (X-, Q-, G-band), detailed information about the distance and orientation of the labels was obtained and provided insights into the global conformational dynamics of the RNA duplex.
View Article and Find Full Text PDFPulsed electron paramagnetic resonance (EPR) experiments, among them most prominently pulsed electron-electron double resonance experiments (PELDOR/DEER), resolve the conformational dynamics of nucleic acids with high resolution. The wide application of these powerful experiments is limited by the synthetic complexity of some of the best-performing spin labels. The recently developed $\bf\acute{G}$ (G-spin) label, an isoindoline-nitroxide derivative of guanine, can be incorporated non-covalently into DNA and RNA duplexes via Watson-Crick base pairing in an abasic site.
View Article and Find Full Text PDFPELDOR (pulsed electron-electron double resonance) is an established method to study intramolecular distances and can give evidence for conformational changes and flexibilities. However, it can also be used to study intermolecular interactions as for example oligerimization. Here, we used PELDOR to study the "end-to-end" stacking of small double-stranded (ds) RNAs.
View Article and Find Full Text PDFThe investigation of the structure and conformational dynamics of biomolecules under physiological conditions is challenging for structural biology. Although pulsed electron paramagnetic resonance (like PELDOR) techniques provide long-range distance and orientation information with high accuracy, such studies are usually performed at cryogenic temperatures. At room temperature (RT) PELDOR studies are seemingly impossible due to short electronic relaxation times and loss of dipolar interactions through rotational averaging.
View Article and Find Full Text PDFPulsed electron-electron double resonance (PELDOR/DEER) experiments of nucleic acids with rigid spin labels provide highly accurate distance and orientation information. Here we combine PELDOR experiments with molecular dynamics (MD) simulations to arrive at an atomistic view of the conformational dynamics of DNA. The MD simulations closely reproduce the PELDOR time traces, and demonstrate that bending, in addition to twist-stretch motions, underpin the sub-μs dynamics of DNA.
View Article and Find Full Text PDF