Chronic infection with hepatitis C virus (HCV) is associated with significant liver disease and is therefore an important public health problem. The current standard-of-care therapy for chronic HCV infection consists of a combination of pegylated (PEG) interferon (IFN)-α and ribavirin. Although this therapy effectively generates a sustained viral response in approximately half of treated individuals, it is associated with significant hematological and neurological side effects.
View Article and Find Full Text PDFJ Interferon Cytokine Res
August 2010
Approximately 500 million people worldwide are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV), and are therefore at an increased risk for developing fatal liver diseases such as cirrhosis and hepatocellular carcinoma. The intracellular antiviral responses induced by interferon (IFN)-alpha/-beta and/or IFN-gamma play critical roles in the pathogenesis of HBV and HCV infection, and the function of IFN-lambda in the host immune response to these viruses is beginning to be revealed. A better understanding of how IFN-lambda influences HBV or HCV persistence is not only important for understanding the mechanisms of chronic virus infection, but also may lead to new approaches for improved antiviral therapies.
View Article and Find Full Text PDFThe type III interferons (IFN-lambda1, 2, and 3) induce an antiviral response similar to IFN-alpha/beta, but mediate their activity through a unique receptor. We found that like IFN-alpha/beta, IFN-lambda prevents the assembly of HBV capsids, demonstrating convergence of the two signaling pathways through a single antiviral mechanism. In contrast to IFN-lambda, the structurally related cytokine interleukin (IL)-22 only minimally reduced HBV replication.
View Article and Find Full Text PDFJ Interferon Cytokine Res
March 2010
The type III interferon (IFN) family elicits an antiviral response that is nearly identical to that evoked by IFN-alpha/beta. However, these cytokines (known as IFN-lambda1, 2, and 3) signal through a distinct receptor, and thus may be resistant to the evasion strategies used by some viruses to avoid the IFN-alpha/beta response. Orthopoxviruses are highly resistant to IFN-alpha/beta because they encode well-characterized immunomodulatory proteins that inhibit IFN activity.
View Article and Find Full Text PDFThe interferon (IFN)-related cytokine interleukin (IL)-29 (also known as IFN-lambda1) inhibits virus replication by inducing a cellular antiviral response similar to that activated by IFN-alpha/beta. However, because it binds to a unique receptor, this cytokine may function cooperatively with IFN-alpha/beta or IFN-gamma during natural infections to inhibit virus replication, and might also be useful therapeutically in combination with other cytokines to treat chronic viral infections such as hepatitis C (HCV). We therefore investigated the ability of IL-29 and IFN-alpha or IFN-gamma to cooperatively inhibit virus replication and induce antiviral gene expression.
View Article and Find Full Text PDFCandida albicans is a diploid fungus that undergoes a morphological transition between budding yeast, hyphal, and pseudohyphal forms. The morphological transition is strongly correlated with virulence and is regulated in part by quorum sensing. Candida albicans produces and secretes farnesol that regulates the yeast to mycelia morphological transition.
View Article and Find Full Text PDF