Publications by authors named "Nicole Di Gallo"

Amorphous solid dispersions (ASDs) enable formulations to improve the solubility of poorly soluble active pharmaceutical ingredients (APIs). The amorphous state is reached through the disruption of the crystalline lattice of an API resulting in an increased apparent solubility with faster disintegration. Nevertheless, this form is characterized by a high-energy state which is prone to re-crystallization.

View Article and Find Full Text PDF

The aim of this study is to investigate the influence of polymer chemistry on the properties of oral dosage forms produced using selective laser sintering (SLS). The dosage forms were printed using different grades of polyvinyl alcohol or copovidone in combination with indomethacin as the active pharmaceutical ingredient. The properties of the printed structures were assessed according to European Pharmacopoeia guidelines at different printing temperatures and laser scanning speeds in order to determine the suitable printing parameters.

View Article and Find Full Text PDF

Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.

View Article and Find Full Text PDF

Hot-melt extrusion (HME) is the most preferred and effective method for manufacturing amorphous solid dispersions at production scale, but it consumes large amounts of samples when used for formulation development. Herein, we show a novel approach to screen the polymers by overcoming the disadvantage of conventional HME screening by using a minimum quantity of active pharmaceutical ingredient (API). Vacuum Compression Molding (VCM) is a fusion-based method to form solid specimens starting from powders.

View Article and Find Full Text PDF