Publications by authors named "Nicole D Staudt"

Cystargolides are natural products originally isolated from Kitasatospora cystarginea NRRL B16505 as inhibitors of the proteasome. They are composed of a dipeptide backbone linked to a β-lactone warhead. Recently, we identified the cystargolide biosynthetic gene cluster, but systematic genetic analyses had not been carried out because of the lack of a heterologous expression system.

View Article and Find Full Text PDF

The caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural β-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target.

View Article and Find Full Text PDF

During cytokine- or chemotherapy-induced hematopoietic stem cell (HSC) mobilization, a highly proteolytic microenvironment can be observed in the bone marrow that has a strong influence on adhesive and chemotactic interactions of HSC with their niches. The increase of proteases during mobilization goes along with a decrease of endogenous protease inhibitors. Prominent members of the proteases involved in HSC mobilization belong to the families of matrix metalloproteinases and cathepsins, which are able to degrade chemokines/cytokines, extracellular matrix components, and membrane-bound adhesion receptors.

View Article and Find Full Text PDF

Recruitment of monocytes into sites of inflammation is essential in the immune response. In cancer, recruited monocytes promote invasion, metastasis, and possibly angiogenesis. LDL receptor-related protein (LRP1) is an endocytic and cell-signaling receptor that regulates cell migration.

View Article and Find Full Text PDF

Hematopoietic stem and progenitor cells (HSPCs) are known to reside in specialized niches at the endosteum in the trabecular bone. Osteoblasts are the major cell type of the endosteal niche. It is well established that secreted proteases are involved in cytokine-induced mobilization processes that release stem cell from their niches.

View Article and Find Full Text PDF

Background: Hematopoietic stem cells are retained within discrete bone marrow niches through the effects of cell adhesion molecules and chemokine gradients. However, a small proportion of hematopoietic stem cells can also be found trafficking in the peripheral blood. During induced stem cell mobilization a proteolytic microenvironment is generated, but whether proteases are also involved in physiological trafficking of hematopoietic stem cells is not known.

View Article and Find Full Text PDF