Elucidation of the role of gut microbiota in the metabolism of orally administered drugs may improve therapeutic effectiveness and contribute to the development of personalized medicine. In this study, ten different artificial gut microbiota (AGM), obtained by culturing fecal samples in a continuous fermentation system, were challenged for their metabolizing capacity on a panel of six glucocorticoids selected from either prodrugs or drugs. Data from metabolic stability assays highlighted that, while the hydrolysis-mediated conversion of prodrugs to drugs represented only a minor metabolic pathway, significant differences in the stability of parent compounds and in their conversion rates to multiple reductive metabolites were obtained for the selected drugs.
View Article and Find Full Text PDFThe implication of cyclooxygenase (COX) type 2 in post-traumatic consequences is so far controversial. In experimental models of traumatic brain injury (TBI), genetic disruption or pharmacological inhibition of COX-2 has been shown to be neuroprotective, deleterious or without effect. Therefore, the aim of our study was to investigate the effect of COX-2 inhibition against neurological deficit and brain oedema after TBI that was induced by mechanical percussion in male Swiss mice.
View Article and Find Full Text PDFTraumatic brain injury (TBI) induces both focal and diffuse lesions that are concurrently responsible for the ensuing morbidity and mortality and for which no established treatment is available. It has been recently reported that an endogenous neuroprotector, the soluble form α of the amyloid precursor protein (sAPPα), exerts neuroprotective effects following TBI. However, the emergent post-traumatic neuroinflammatory environment compromises sAPPα production and may promote neuronal degeneration and consequent brain atrophy.
View Article and Find Full Text PDFTraumatic brain injury (TBI) causes a wide spectrum of consequences, such as microglial activation, cerebral inflammation, and focal and diffuse brain injury, as well as functional impairment. In this study we aimed to investigate the effects of acute treatment with minocycline as an inhibitor of microglial activation on cerebral focal and diffuse lesions, and on the spontaneous locomotor activity following TBI. The weight-drop model was used to induce TBI in mice.
View Article and Find Full Text PDFOne of the severe complications following traumatic brain injury (TBI) is cerebral edema and its effective treatment is of great interest to prevent further brain damage. This study investigated the effects of minocycline, known for its anti-inflammatory properties, on cerebral edema and its respective inflammatory markers by comparing different dose regimens, on oxidative stress and on neurological dysfunction following TBI. The weight drop model was used to induce TBI in mice.
View Article and Find Full Text PDFBackground: Traumatic brain injury models are widely studied, especially through gene expression, either to further understand implied biological mechanisms or to assess the efficiency of potential therapies. A large number of biological pathways are affected in brain trauma models, whose elucidation might greatly benefit from transcriptomic studies. However the suitability of reference genes needed for quantitative RT-PCR experiments is missing for these models.
View Article and Find Full Text PDFAcute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta.
View Article and Find Full Text PDFNeuroinflammation is one of the events occurring after acute brain injuries. The aim of the present report was to characterize a rat model to study acute neuroinflammation on the histopathological, biochemical and functional outcomes. Lipopolysaccharide (LPS), known as a strong immunostimulant, was directly injected into the hippocampus.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase (PARP) was shown to be detrimental in cerebral ischemia but the mechanisms whereby PARP is deleterious have yet to be determined. They may include a role in neutrophil infiltration known to aggravate ischemic damage. In this context, we investigated the effect of 3-aminobenzamide (3-AB), a PARP inhibitor, on brain damage and neutrophil infiltration after transient focal cerebral ischemia in mice.
View Article and Find Full Text PDFThe present study examined caspase activation and its modulation by nitric oxide (NO) in a model of oxidative stress induced by injection of malonate (3 micromol), a mitochondrial toxin, into rat striatum. Caspase-3-like enzymatic activity was maximal 6 h after malonate while NO production evaluated by its metabolites nitrites and nitrates was increased at 3 h. The neuronal NO-synthase inhibitor 7-nitroindazole reduced malonate induced-NO production by 50% at 25 mg/kg and enhanced by 32% caspase activation.
View Article and Find Full Text PDFTraumatic brain injury produces nitric oxide and reactive oxygen species. Peroxynitrite, resulting from the combination of nitric oxide and superoxide anions, triggers DNA strand breaks, leading to the activation of poly(ADP-ribose)polymerase-1. As excessive activation of this enzyme induces cell death, we examined the production of nitrosative stress, the activation of poly(ADP-ribose)polymerase-1, and the role of this enzyme in the outcomes of traumatic brain injury produced by fluid percussion in rats.
View Article and Find Full Text PDFThe present work examined whether polymorphonuclear neutrophil (PMN) infiltration contributes to cortical and striatal brain damage and oxidative stress in a model of transient focal cerebral ischemia. A 2-h occlusion of the left middle cerebral artery and ipsilateral common carotid artery was performed in rats. Administration of the neutropenic agent vinblastine (0.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
August 2003
Nitric oxide (NO) and reactive oxygen species are both implicated in neuronal death due to cerebral ischemia. BN 80933, an original compound associating an inhibitor of neuronal NO synthase with an antioxidant, has been shown to reduce functional and histological damage in rat submitted to cerebral ischemia. The aim of the present study was to confirm these results in mice and to further examine the effects of BN 80933 on inflammatory response, including blood-brain barrier (BBB) disruption, brain edema, and neutrophil infiltration after transient middle cerebral artery occlusion (MCAO).
View Article and Find Full Text PDFThe role of nitric oxide (NO) in the development of post-ischemic cerebral infarction has been extensively examined, but fewer studies have investigated its role in other outcomes. In the present study, we first determined the temporal evolution of infarct volume, NO production, neurological deficit and blood-brain barrier disruption in a model of transient focal cerebral ischemia in mice. We then examined the effect of the nonselective NO-synthase inhibitor N(omega)-nitro-L-arginine-methylester (L-NAME).
View Article and Find Full Text PDF