Climate change is altering hydrological cycles globally, and in Mediterranean (med-) climate regions it is causing the drying of river flow regimes, including the loss of perennial flows. Water regime exerts a strong influence over stream assemblages, which have developed over geological timeframes with the extant flow regime. Consequently, sudden drying in formerly perennial streams is expected to have large, negative impacts on stream fauna.
View Article and Find Full Text PDFMany countries are experiencing a "care crisis" driven by increasing demand for care services alongside difficulties in recruiting and retaining an appropriate care workforce. One of the solutions offered to this is the use of robotic technologies. While there are several positives produced by robots, they are not without challenges and have the potential to be misused.
View Article and Find Full Text PDFMany species of termites build large, structurally complex mounds, and the mechanisms behind this coordinated construction have been a longstanding topic of investigation. Recent work has suggested that humidity may play a key role in the mound expansion of savannah-dwelling species: termites preferentially deposit soil on the mound surface at the boundary of the high-humidity region characteristic of the mound interior, implying a coordination mechanism through environmental feedback where addition of wet soil influences the humidity profile and vice versa. Here we test this potential mechanism physically using a robotic system.
View Article and Find Full Text PDFRecent climate change is altering the timing, duration and volume of river and stream flows globally, and in many regions, perennially flowing rivers and streams are drying and switching to intermittent flows. Profound impacts on aquatic biota are becoming apparent, due in part to the strong influence of flow regime on the evolution of life history. We made predictions of life-history responses for 13 common aquatic invertebrate species (four caddisflies, five mayflies, two stoneflies, a dragonfly and an amphipod), to recent flow regime change in Australian mediterranean climate streams, based on historic studies in the same streams.
View Article and Find Full Text PDFTermites in the genus construct large-scale soil mounds above their nests. The classic explanation for how termites coordinate their labour to build the mound, based on a putative cement pheromone, has recently been called into question. Here, we present evidence for an alternate interpretation based on sensing humidity.
View Article and Find Full Text PDFand are two morphologically similar termite species occupying the same habitat across southern Africa. Both build large mounds and tend mutualistic fungal symbionts for nutrients, but despite these behavioural and physiological similarities, the mound superstructures they create differ markedly. The behavioural differences behind this discrepancy remain elusive, and are the subject of ongoing investigations.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2019
Termite colonies construct towering, complex mounds, in a classic example of distributed agents coordinating their activity via interaction with a shared environment. The traditional explanation for how this coordination occurs focuses on the idea of a 'cement pheromone', a chemical signal left with deposited soil that triggers further deposition. Recent research has called this idea into question, pointing to a more complicated behavioural response to cues perceived with multiple senses.
View Article and Find Full Text PDFIEEE Winter Conf Appl Comput Vis
March 2017
Commercially available depth sensing devices are primarily designed for domains that are either macroscopic, or static. We develop a solution for fast microscale 3D reconstruction, using off-the-shelf components. By the addition of lenses, precise calibration of camera internals and positioning, and development of bespoke software, we turn an infrared depth sensor designed for human-scale motion and object detection into a device with mm-level accuracy capable of recording at up to 30Hz.
View Article and Find Full Text PDFObjectives: This paper reports on findings from a systematic review designed to investigate the state of systems science research in public health. The objectives were to: (1) explore how systems methodologies are being applied within public health and (2) identify fruitful areas of activity.
Design: A systematic review was conducted from existing literature that draws on or uses systems science (in its various forms) and relates to key public health areas of action and concern, including tobacco, alcohol, obesity and the social determinants of health.
APR2 is the dominant APR (adenosine 5'-phosphosulfate reductase) in the model plant Arabidopsis thaliana, and converts activated sulfate to sulfite, a key reaction in the sulfate reduction pathway. To determine whether APR2 has a role in selenium tolerance and metabolism, a mutant Arabidopsis line (apr2-1) was studied. apr2-1 plants had decreased selenate tolerance and photosynthetic efficiency.
View Article and Find Full Text PDF