Diabetes impairs the microcirculation and function of various vital tissues throughout the body. The conjunctival microcirculation can be non-invasively imaged and thus enables assessment of microvascular hemodynamics. In this study, alterations in conjunctival microvascular hemodynamics were quantitatively assessed at stages of increasing diabetic microvasculopathy based on diabetic retinopathy (DR).
View Article and Find Full Text PDFIEEE Trans Med Imaging
February 2016
The conjunctival microcirculation is accessible for direct visualization and quantitative assessment of microvascular hemodynamic properties. Currently available methods to assess hemodynamics in the conjunctival microvasculature use manual or semi-automated algorithms, which can be inefficient for application to a large number of microvessels within the microvascular network. We present an automated image analysis method for measurements of diameter and blood velocity in microvessels.
View Article and Find Full Text PDFPurpose: To determine alterations in bulbar conjunctival microvascular haemodynamics in sickle cell retinopathy (SCR) subjects with focal macular thinning (FMT).
Methods: Conjunctival microcirculation imaging and spectral domain optical coherence tomography (SD-OCT) were performed in 22 subjects (eyes) diagnosed with SCR. Based on evaluation of SD-OCT retinal thickness maps, eyes were assigned to one of the two groups: with or without FMT.
Purpose: To determine the effects of diabetic retinopathy (DR), increased foveal thickness (FT), and adaptive optics (AO) on wavefront aberrations and Shack-Hartmann (SH) image quality.
Methods: Shack-Hartmann aberrometry and wavefront error correction were performed with a bench-top AO retinal imaging system in 10 healthy control and 19 DR subjects. Spectral domain optical coherence tomography was performed and central FT was measured.