Publications by authors named "Nicole Bobak"

Recombinant TWIK2 channels produce weak basal background K currents. Current amplitudes depend on the animal species the channels have been isolated from and on the heterologous system used for their re-expression. Here we show that this variability is due to a unique cellular trafficking.

View Article and Find Full Text PDF

Purpose: To evaluate the therapeutic potential of Col-Treg, a collagen II-specific type 1 regulatory T-cell immunotherapy for the treatment of noninfectious uveitis (NIU).

Methods: Col-Treg cells were produced from collagen II-specific T cell receptor (TCR) transgenic mice or peripheral blood of healthy donors. Phenotypic characterization was performed by flow cytometry, and cytokine secretion was evaluated with Flowcytomix or ELISA.

View Article and Find Full Text PDF

Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K2P5.1 (TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis.

View Article and Find Full Text PDF

Among K2P channels, a few of them turned out to be difficult to express in heterologous systems and were coined "silent subunits". Recent studies have shed light on the mechanisms behind this apparent lack of channel activity at the plasma membrane. For TWIK1 and THIK2 channels, silence is related to a combination of intracellular retention and low intrinsic activity.

View Article and Find Full Text PDF

Potassium channels can fulfill both beneficial and detrimental roles in neuronal damage during ischemic stroke. Earlier studies have characterized a neuroprotective role of the two-pore domain potassium channels KCNK2 (TREK1) and KCNK3 (TASK1). Protective neuronal hyperpolarization and prevention of intracellular Ca(2+) overload and glutamate excitotoxicity were suggested to be the underlying mechanisms.

View Article and Find Full Text PDF

Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky' immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes.

Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is an integral part of the neurovascular unit (NVU). The NVU is comprised of endothelial cells that are interconnected by tight junctions resting on a parenchymal basement membrane ensheathed by pericytes, smooth muscle cells and a layer of astrocyte end feet. Circulating blood cells, such as leukocytes, complete the NVU.

View Article and Find Full Text PDF

Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment.

View Article and Find Full Text PDF

The two-pore domain potassium channel TASK1 (KCNK3) has recently emerged as an important modulator in autoimmune CNS inflammation. Previously, it was shown that T lymphocytes obtained from TASK1(-/-) mice display impaired T cell effector functions and that TASK1(-/-) mice show a significantly reduced disease severity in myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We here evaluate a potent and specific TASK1 channel inhibitor, A293, which caused a dose-dependent reduction of T cell effector functions (cytokine production and proliferation).

View Article and Find Full Text PDF

A variety of ion channels are supposed to orchestrate the homoeostatic volume regulation in T lymphocytes. However, the relative contribution of different potassium channels to the osmotic volume regulation and in particular to the regulatory volume decrease (RVD) in T cells is far from clear. This study explores a putative role of the newly identified K(2P) channels (TASK1, TASK2, TASK3 and TRESK) along with the voltage-gated potassium channel K(V)1.

View Article and Find Full Text PDF

Introduction: CD4+ T cells express K(2P)5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K(2P)5.

View Article and Find Full Text PDF

Background: Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke.

View Article and Find Full Text PDF

Objective: Activation of T cells critically depends on potassium channels. We here characterize the impact of K(2P)5.1 (KCNK5; TASK2), a member of the 2-pore domain family of potassium channels, on T-cell function and demonstrate its putative relevance in a T-cell-mediated autoimmune disorder, multiple sclerosis (MS).

View Article and Find Full Text PDF

Studies in the developing spinal cord have established that morphogenes secreted from the roof- and floor plate influence pattern formation along the dorsal-ventral axis of the neural tube. Bone morphogenetic proteins (Bmps), secreted from the roof plate, act on the more laterally located alar plates to induce position dependent gene expression and cell fate changes. The dorsalizing activity of Bmps is counteracted by Sonic hedgehog (Shh), which is secreted from the floor plate and underlying notochord.

View Article and Find Full Text PDF