Publications by authors named "Nicole Becker"

We identified a rare heterozygous germline loss-of-function variant in the tumor necrosis factor receptor-associated factor 2 (TRAF2) in a young adult patient diagnosed with medulloblastoma. This variant is located within the TRAF-C domain of the E3 ubiquitin ligase protein and is predicted to diminish the binding affinity of TRAF2 to upstream receptors and associated adaptor proteins. Integrative genomics revealed a biallelic loss of TRAF2 via partial copy-neutral loss-of-heterozygosity of 9q in the medulloblastoma genome.

View Article and Find Full Text PDF

Glioblastoma (GBM) is uniformly lethal due to profound treatment resistance. Altered cellular metabolism is a key mediator of GBM treatment resistance. Uptake of the essential sulfur-containing amino acid methionine is drastically elevated in GBMs compared to normal cells, however, it is not known how this methionine is utilized or whether it relates to GBM treatment resistance.

View Article and Find Full Text PDF

Natural prokaryotic gene repression systems often exploit DNA looping to increase the local concentration of gene repressor proteins at a regulated promoter via contributions from repressor proteins bound at distant sites. Using principles from the Escherichia coli lac operon we design analogous repression systems based on target sequence-programmable Transcription Activator-Like Effector dimer (TALED) proteins. Such engineered switches may be valuable for synthetic biology and therapeutic applications.

View Article and Find Full Text PDF

The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as in regulation of the Escherichia coli lactose (lac) operon. Here we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis.

View Article and Find Full Text PDF

After the Zika virus (ZIKV) epidemic in Brazil, ZIKV infections were linked to damage to the central nervous system (CNS) and congenital anomalies. Due to the virus's ability to cross the placenta and reach brain tissue, its effects become severe, leading to Congenital Zika Syndrome (CZS) and resulting in neuroinflammation, microglial activation, and secretion of neurotoxic factors. The presence of ZIKV triggers an inadequate fetal immune response, as the fetus only has the protection of maternal antibodies of the Immunoglobulin G (IgG) class, which are the only antibodies capable of crossing the placenta.

View Article and Find Full Text PDF

Crooke cell adenoma (CCA) is a rare and aggressive subtype of a corticotroph adenoma, which requires lifetime surveillance. There have been 106 cases of CCAs reported in the English literature. We describe 2 cases of CCA, a 48-year-old man and an 84-year-old woman who both presented with binocular diplopia and temple pain.

View Article and Find Full Text PDF

The dynamics of histone-DNA interactions govern chromosome organization and regulates the processes of transcription, replication, and repair. Accurate measurements of the energies and the kinetics of DNA binding to component histones of the nucleosome under a variety of conditions are essential to understand these processes at the molecular level. To accomplish this, we employ three specific single-molecule techniques: force disruption (FD) with optical tweezers, confocal imaging (CI) in a combined fluorescence plus optical trap, and survival probability (SP) measurements of disrupted and reformed nucleosomes.

View Article and Find Full Text PDF

Context.—: Although the basic principles of intraoperative diagnosis in surgical neuropathology have not changed in the last century, the last several decades have seen dramatic changes in tumor classification, terminology, molecular classification, and modalities used for intraoperative diagnosis. As many neuropathologic intraoperative diagnoses are performed by general surgical pathologists, awareness of these recent changes is important for the most accurate intraoperative diagnosis.

View Article and Find Full Text PDF

Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression.

View Article and Find Full Text PDF

Activating BRAF mutations are found in a small subset of patients with newly diagnosed multiple myeloma, but prevalence increases in late-stage, refractory disease, and the mutations are associated with adverse outcome. This prospective single-arm, open-label, multicenter phase 2 trial assessed the efficacy and safety of combined BRAF/MEK inhibition, using encorafenib and binimetinib, in patients with relapsed/refractory multiple myeloma (RRMM) carrying a BRAFV600E mutation. Patients received 450 mg encorafenib once daily and binimetinib 45 mg twice daily.

View Article and Find Full Text PDF

The histone chaperone FACT (facilitates chromatin transcription) enhances transcription in eukaryotic cells, targeting DNA-protein interactions. FACT, a heterodimer in humans, comprises SPT16 and SSRP1 subunits. We measure nucleosome stability and dynamics in the presence of FACT and critical component domains.

View Article and Find Full Text PDF

Pathogenic variants in the NDUFV1 gene, which codes for complex I of the mitochondrial respiratory chain, have been associated with a variety of clinical phenotypes, including a progressive cavitating leukoencephalopathy. The neuropathology of NDUFV1-associated leukoencephalopathy is not well-described. We present a report of a 24-year-old female with two pathogenic variants in the NDUFV1 gene, together with antemortem skeletal muscle biopsy and postmortem neuropathologic examination.

View Article and Find Full Text PDF

What we as scientists and educators assess has a tremendous impact on whom we authorize to participate in science careers. Unfortunately, in critical gateway chemistry courses, assessments commonly emphasize and reward recall of disaggregated facts or performance of (often mathematical) skills. Such an emphasis marginalizes students based on their access to pre-college math preparation and misrepresents the intellectual work of chemistry.

View Article and Find Full Text PDF

The quantitative polymerase chain reaction (qPCR) with detection of duplex DNA yield by intercalator fluorescence is a common and essential technique in nucleic acid analysis. We encountered unexpected results when applying standard qPCR methods to the quantitation of random DNA libraries flanked by regions of fixed sequence, a configuration essential for in vitro selection experiments. Here we describe the results of experiments revealing why conventional qPCR methods can fail to allow automated analysis in such cases, and simple solutions to this problem.

View Article and Find Full Text PDF

Rationale: Depression is often associated with memory impairment, a clinical feature of Alzheimer's disease (AD), but no effective treatment is available. 7-Chloro-4-(phenylselanyl) quinoline (4-PSQ) has been studied in experimental models of diseases that affect the central nervous system.

Objectives: The pharmacological activity of 4-PSQ in depressive-like behavior associated with memory impairment induced by acute restraint stress (ARS) in male Swiss mice was evaluated.

View Article and Find Full Text PDF

Background: The coronavirus disease 2019 (COVID-19) pandemic led to far-reaching restrictions of social and professional life, affecting societies all over the world. To contain the virus, medical schools had to restructure their curriculum by switching to online learning. However, only few medical schools had implemented such novel learning concepts.

View Article and Find Full Text PDF

Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures.

View Article and Find Full Text PDF

Therapies based on the use of immune checkpoint inhibitors (ICIs), such as nivolumab, pembrolizumab, ipilimumab, atezolizumab, avelumab, and durvalumab, have proven effective in the treatment of metastatic urological neoplasms. Recently, it has been hypothesized that the use of this type of treatment prior to surgery could lead to an increased difficulty in renal and bladder surgeries. The literature concerning this topic, however, is still scarce and non-consensual.

View Article and Find Full Text PDF

Gene regulation by control of transcription initiation is a fundamental property of living cells. Much of our understanding of gene repression originated from studies of the Escherichia coli lac operon switch, in which DNA looping plays an essential role. To validate and generalize principles from lac for practical applications, we previously described artificial DNA looping driven by designed transcription activator-like effector dimer (TALED) proteins.

View Article and Find Full Text PDF

Repression of a promoter by entrapment within a tightly bent DNA loop is a common mechanism of gene regulation in bacteria. Besides the mechanical properties of the looped DNA and affinity of the protein that anchors the loop, cellular energetics and DNA negative supercoiling are likely factors determining the stability of the repression loop. cells undergo numerous highly regulated and dynamic transitions as resources are depleted during bacterial growth.

View Article and Find Full Text PDF

The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are 'captured' by protein binding.

View Article and Find Full Text PDF

Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA repair and recombination. Here we combine atomic force microscopy (AFM) and optical tweezers (OT) experiments to show that high mobility group B (HMGB) proteins strongly disrupt nucleosomes, revealing a new mechanism for regulation of chromatin accessibility. We find that both the double box yeast Hmo1 and the single box yeast Nhp6A display strong binding preferences for nucleosomes over linker DNA, and both HMGB proteins destabilize and unwind DNA from the H2A-H2B dimers.

View Article and Find Full Text PDF

The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as the Escherichia coli lactose (lac) operon. Here, we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis.

View Article and Find Full Text PDF

Genetic switches must alternate between states whose probabilities are dependent on regulatory signals. Classical examples of transcriptional control in bacteria depend on repressive DNA loops anchored by proteins whose structures are sensitive to small molecule inducers or co-repressors. We are interested in exploiting these natural principles to engineer artificial switches for transcriptional control of bacterial genes.

View Article and Find Full Text PDF