Publications by authors named "Nicole Beauchemin"

Background: Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles.

View Article and Find Full Text PDF
Article Synopsis
  • - CEACAM1 is a crucial membrane protein involved in various immune and non-immune functions, acting as both a homophilic and heterophilic ligand with host proteins like CEACAM5 and TIM-3.
  • - The protein is targeted by several pathogens to help them invade hosts and evade the immune system, linking it to issues like infectious diseases, autoimmunity, and cancer.
  • - The review details the structural interactions of CEACAM1, examining its different states (monomeric, dimeric, oligomeric) and their implications for signaling and function, including the impact of avidity on its activity.
View Article and Find Full Text PDF
Article Synopsis
  • CEACAM1 is a cell surface protein that affects immune responses, but its role in tumors is not well understood.
  • The study used specialized antibodies to analyze the presence of CEACAM1 alongside PD1 and PD-L1 in various immune cells from melanoma patients and healthy controls.
  • Results showed high levels of CEACAM1 on immune cells in melanoma patients, particularly in those resistant to treatment, indicating potential pathways for targeted therapies.
View Article and Find Full Text PDF
Article Synopsis
  • - SHP-1 is a protein that helps regulate glucose and lipid balance and its role in regulating PPARγ2, a key player in fat cell development (adipogenesis), was previously unexplored.
  • - The study found that SHP-1 interacts with PPARγ2 via its SH2 domain and can reduce the tyrosine phosphorylation on PPARγ2, leading to decreased stability of this protein.
  • - When SHP-1 is lost, PPARγ2's activation increases, resulting in higher expression of its target genes and more lipid accumulation in cells, but blocking PPARγ2's phosphorylation can lessen this effect.
View Article and Find Full Text PDF

We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II.

View Article and Find Full Text PDF

The human (h) CEACAM1 GFCC' face serves as a binding site for homophilic and heterophilic interactions with various microbial and host ligands. hCEACAM1 has also been observed to form oligomers and micro-clusters on the cell surface which are thought to regulate hCEACAM1-mediated signaling. However, the structural basis for hCEACAM1 higher-order oligomerization is currently unknown.

View Article and Find Full Text PDF

We investigated the role of the NFE2L3 transcription factor in inflammation-induced colorectal cancer. Our studies revealed that Nfe2l3 mice exhibit significantly less inflammation in the colon, reduced tumor size and numbers, and skewed localization of tumors with a more pronounced decrease of tumors in the distal colon. CIBERSORT analysis of RNA-seq data from normal and tumor tissue predicted a reduction in mast cells in Nfe2l3 animals, which was confirmed by toluidine blue staining.

View Article and Find Full Text PDF

Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver and the lung, increasing their adhesion and metastasis following postoperative complications.

View Article and Find Full Text PDF

The mechanisms linking chronic inflammation of the gut (IBD) and increased colorectal cancer susceptibility are poorly understood. IBD risk is influenced by genetic factors, including the IBD5 locus (human 5q31), that harbors the IRF1 gene. A cause-to-effect relationship between chronic inflammation and colorectal cancer, and a possible role of IRF1 were studied in Irf1 mice in a model of colitis-associated colorectal cancer (CA-CRC) induced by azoxymethane and dextran sulfate.

View Article and Find Full Text PDF

Humans live in a microbial world that includes pathogenic bacteria, viruses, and fungi that cause lethal infections. In addition, a large number of microbial communities inhabit mucosal surfaces where they provide key metabolic activities, facilitating adaptation to changing environments. New genome technologies enable both sequencing of the human genome and sequence-based cataloging of microbial communities inhabiting human mucosal surfaces.

View Article and Find Full Text PDF

We have shown that carcinoembryonic antigen cell adhesion molecule 1 long isoform (CEACAM1-L) expression in MC38 metastatic colorectal cancer (CRC) cells results in liver metastasis inhibition via CCL2 and STAT3 signaling. But other molecular mechanisms orchestrating CEACAM1-L-mediated metastasis inhibition remain to be defined. We screened a panel of mouse and human CRC cells and evaluated their metastatic outcome after CEACAM1 overexpression or downregulation.

View Article and Find Full Text PDF

CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease.

View Article and Find Full Text PDF

Unlabelled: Portal vein embolization (PVE) can be required to stimulate liver regeneration before hepatectomy for colorectal liver metastasis (CRCLM), however PVE may also trigger CRCLM progression in patients initially exhibiting chemotherapy response. Using RNA-seq, we aimed to determine the molecular networks involved in metastatic progression in this context. A prospective study including all CRCLM patients undergoing PVE prior to hepatectomy was conducted.

View Article and Find Full Text PDF

The common R653Q variant (∼20% homozygosity in Caucasians) in the synthetase domain of the folate-metabolizing enzyme MTHFD1 reduces purine synthesis. Although this variant does not appear to affect risk for colorectal cancer, we questioned whether it would affect growth of colorectal tumors. We induced tumor formation in a mouse model for MTHFD1-synthetase deficiency (Mthfd1S ) using combined administration of azoxymethane (AOM) and dextran sodium sulfate (DSS) in male and female wild-type and Mthfd1S mice.

View Article and Find Full Text PDF

Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref.

View Article and Find Full Text PDF

The expression and activities of RNA binding proteins are frequently dysregulated in human cancer. Their roles, however, appears to be complex, with reports indicating both pro-tumorigenic and tumor suppressive functions. Here we show, using two classical mouse cancer models, that the role of KH-type RNA binding protein, Sam68, in tumor development can be influenced by the status of the p53 tumor suppressor.

View Article and Find Full Text PDF

We analyzed the molecular basis for carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)-controlled inhibition of epithelial-mesenchymal transition (EMT) in a mouse model for mammary adenocarcinoma (WAP-T mice). We demonstrate that silencing of CEACAM1 in WAP-T tumor-derived G-2 cells induces epithelial-mesenchymal plasticity (EMP), as evidenced by typical changes of gene expression, morphology and increased invasion. In contrast, reintroduction of CEACAM1 into G-2 cells reversed up-regulation of genes imposing mesenchymal transition, as well as cellular invasion.

View Article and Find Full Text PDF

Mutational processes and signatures that drive early tumorigenesis are centrally important for early cancer prevention. Yet, to date, biomarkers and risk factors for polyps (adenomas) that inordinately and rapidly develop into colon cancer remain poorly defined. Here, we describe surprisingly high mutational profiles through whole-genome sequence (WGS) analysis in 2 of 4 pairs of benign colorectal adenoma tissue samples.

View Article and Find Full Text PDF
Article Synopsis
  • Different inbred strains of mice respond variably to colitis-associated colorectal cancer (CA-CRC), with the FVB/NJ strain showing the highest susceptibility and tumor burden compared to other strains like A/J and B6.
  • A significant increase in tumor development in FVB/NJ mice was observed as early as 8 weeks post-treatment with azoxymethane/dextran sulfate sodium, with findings indicating a 5.5-fold increase in tumors compared to other strains.
  • Genetic analysis revealed a new susceptibility locus, Ccs6, on chromosome 6, associated with increased tumor multiplicity; further studies are exploring its potential role in cancer development and inflammatory responses.
View Article and Find Full Text PDF

Colitis-associated colorectal cancer (CA-CRC) is the cause of death in 10%-15% of inflammatory bowel disease (IBD) patients. CA-CRC results from the accumulation of mutations in intestinal epithelial cells and progresses through a well-characterized inflammation to dysplasia to carcinoma sequence. Quantitative estimates of overall CA-CRC risks are highly variable ranging from 2% to 40% depending on IBD severity, duration and location, with IBD duration being the most significant risk factor associated with CA-CRC development.

View Article and Find Full Text PDF

The crosstalk between inflammation and tumorigenesis is now clearly established. However, how inflammation is elicited in the metastatic environment and the corresponding contribution of innate immunity pathways in suppressing tumor growth at secondary sites are poorly understood. Here, we show that mice deficient in Nlrp3 inflammasome components had exacerbated liver colorectal cancer metastatic growth, which was mediated by impaired interleukin-18 (IL-18) signaling.

View Article and Find Full Text PDF