Publications by authors named "Nicole Bassous"

Article Synopsis
  • * New cell-tethering and hypoxic conditioning colloidal hydrogels, which contain mesenchymal stem cells (MSCs), help retain cells and improve local delivery of healing factors over time.
  • * In experiments, these hydrogels not only improved cell retention and oxygen supply but also led to better blood flow restoration and muscle healing in a mouse model of hindlimb ischemia.
View Article and Find Full Text PDF
Article Synopsis
  • Periodontitis is a chronic inflammatory disease caused by bacteria that currently has limited treatment options, mainly slowing its progression.
  • Researchers introduced a new solution using 3D printed bilayer membranes designed for dual-drug delivery and support tissue regeneration, utilizing nanocomposite hydrogels with antimicrobial properties.
  • These membranes showed strong mechanical properties, sustained drug release, and the ability to promote bone regeneration and reduce inflammation, offering a promising advance in periodontitis treatment.
View Article and Find Full Text PDF

Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented.

View Article and Find Full Text PDF

Skeletal muscle connective tissue (MCT) surrounds myofiber bundles to provide structural support, produce force transduction from tendons, and regulate satellite cell differentiation during muscle regeneration. Engineered muscle tissue composed of myofibers layered within MCT has not yet been developed. Herein, a bioengineering strategy to create MCT-layered myofibers through the development of stem cell fate-controlling biomaterials that achieve both myogenesis and fibroblast differentiation in a locally controlled manner at the single construct is introduced.

View Article and Find Full Text PDF

Noninvasive monitoring of biofabricated tissues during the biomanufacturing process is needed to obtain reproducible, healthy, and functional tissues. Measuring the levels of biomarkers secreted from tissues is a promising strategy to understand the status of tissues during biofabrication. Continuous and real-time information from cultivated tissues enables users to achieve scalable manufacturing.

View Article and Find Full Text PDF

Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation.

View Article and Find Full Text PDF

In additive manufacturing, bioink formulations govern strategies to engineer 3D living tissues that mimic the complex architectures and functions of native tissues for successful tissue regeneration. Conventional 3D-printed tissues are limited in their ability to alter the fate of laden cells. Specifically, the efficient delivery of gene expression regulators (i.

View Article and Find Full Text PDF

Experimental models of the central nervous system (CNS) are imperative for developmental and pathophysiological studies of neurological diseases. Among these models, three-dimensional (3D) induced pluripotent stem cell (iPSC)-derived brain organoid models have been successful in mitigating some of the drawbacks of 2D models; however, they are plagued by high organoid-to-organoid variability, making it difficult to compare specific gene regulatory pathways across 3D organoids with those of the native brain. Single-cell RNA sequencing (scRNA-seq) transcriptome datasets have recently emerged as powerful tools to perform integrative analyses and compare variability across organoids.

View Article and Find Full Text PDF

Under the current climate, physicians prescribe antibiotics for treating bacterial infections, and such a limitation to a single class of drugs is disadvantageous since antibiotic-resistant bacteria have adapted to withstanding their stresses. Antibiotic alternatives are sought, and herein metal nanoparticles comprised of the rare earth elements cerium and yttrium were determined to invoke toxicity on methicillin-resistant (MRSA) and a multi-drug-resistant strain of (MDR ). Ceria nanoparticles, yttrium-doped ceria nanoparticles, and cerium-doped yttria nanoparticles were fabricated by a wet chemical route, homogeneous precipitation in hexamethylenetetramine (HMT).

View Article and Find Full Text PDF

The engineering of multifunctional surgical bactericidal nanofibers with inherent suitable mechanical and biological properties, through facile and cheap fabrication technology, is a great challenge. Moreover, hernia, which is when organ is pushed through an opening in the muscle or adjacent tissue due to damage of tissue structure or function, is a dire clinical challenge that currently needs surgery for recovery. Nevertheless, post-surgical hernia complications, like infection, fibrosis, tissue adhesions, scaffold rejection, inflammation, and recurrence still remain important clinical problems.

View Article and Find Full Text PDF

Porous three-dimensional hydrogel scaffolds have an exquisite ability to promote tissue repair. However, because of their high water content and invasive nature during surgical implantation, hydrogels are at an increased risk of bacterial infection. Recently, we have developed elastic biomimetic cryogels, an advanced type of polymeric hydrogel, that are syringe-deliverable through hypodermic needles.

View Article and Find Full Text PDF

Organic-inorganic hybrid coatings deposited on different types of metallic alloys have shown outstanding anticorrosive performance. The incorporation of osteoconductive additives such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) into organic-inorganic hybrid coatings is promising to improve the osseointegration and corrosion resistance of Ti6Al4V alloys, which are the most widely used metallic orthopedic and dental implant materials today. Therefore, this study evaluated the capability of poly(methyl methacrylate) (PMMA)-TiO and PMMA-ZrO hybrid coatings modified with HA and β-TCP to act as bioactive and corrosion protection coatings for Ti6Al4V alloys.

View Article and Find Full Text PDF

Purpose: The aim of this study was to prepare zeolite/iron (III) oxide nanocomposites (zeolite/FeO-NCs) as a smart fertilizer to improve crop yield and soil productivity.

Methods: Zeolite/FeO-NCs were successfully produced by loading of FeO-NPs onto the zeolite surface using a quick green precipitation method. The production of zeolite/FeO nanocomposites was performed under a mild condition using environmentally friendly raw materials as a new green chemistry method.

View Article and Find Full Text PDF

A vast growing problem in orthopaedic medicine is the increase of clinical cases with antibiotic resistant pathogenic microbes, which is predicted to cause higher mortality than all cancers combined by 2050. Bone infectious diseases limit the healing ability of tissues and increase the risk of future injuries due to pathologic tissue remodelling. The traditional treatment for bone infections has several drawbacks and limitations, such as lengthy antibiotic treatment, extensive surgical interventions, and removal of orthopaedic implants and/or prosthesis, all of these resulting in long-term rehabilitation.

View Article and Find Full Text PDF

Biomimicry strategies, inspired from natural organization of living organisms, are being widely used in the design of nanobiomaterials. Particularly, nonlithographic techniques have shown immense potential in the facile fabrication of nanostructured surfaces at large-scale production. Orthopedic biomaterials or coatings possessing extracellular matrix-like nanoscale features induce desirable interactions between the bone tissue and implant surface, also known as osseointegration.

View Article and Find Full Text PDF

Conditions resulting from musculoskeletal deficiencies (MSDs) are wide-ranging and retain the likelihood for restricting motion or producing pain, especially in the lower back, neck, and upper limbs. Engineered scaffold devices are being produced to replace antiquated modalities that suffer from structural and mechanical deficiencies in the treatment of MSDs. Here, as-fabricated Ti-6Al-4V-based Hive™ interbody fusion scaffolds, commercialized by HD Lifesciences LLC, were assayed for their osteogenicity and antibacterial potential using a series of characterization and in vitro tests, as well as by quantitative analyses.

View Article and Find Full Text PDF

Prevalent research underscores efforts to engineer highly sophisticated nanovesicles that are functionalized to combat antibiotic-resistant bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), and that aid with wound healing or immunomodulation. This is especially relevant for patients who are susceptible to Staphylococcus aureus infections postoperatively. Here, antibacterial formulations are incorporated into polymeric, biocompatible vesicles called polymersomes (PsNPs) that self-assemble via hydrophobic interactions of admixed aqueous and organic substances.

View Article and Find Full Text PDF
Article Synopsis
  • Overuse of antibiotics poses environmental and health risks, highlighting the need for accurate sensors to detect their presence.
  • This study introduces a mass-sensitive sensor capable of detecting rifampicin, a crucial antibiotic for treating tuberculosis, by utilizing a carbon nanotube and bismuth tungstate nanocomposite.
  • The sensor demonstrates high sensitivity towards rifampicin with a detection limit of 0.16 μM, excellent specificity compared to related antibiotics, and successful application in monitoring rifampicin in human urine samples.
View Article and Find Full Text PDF

Herein, we report the design of electrospun ultrathin fibers based on the combination of three different polymers polycaprolactone (PCL), polyethylene glycol (PEG), and gelatin methacryloyl (GelMA), and their potential bactericidal activity against three different bacteria Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

A successful post-surgical implant is associated with accelerated recovery periods, involving the efficient regeneration of lost or non-viable tissue and a reduction in microbial growth. Alternatively, the long-term success of an implant is guided by the selection of an engineered biomimetic material that is biocompatible, non-biodegradable, and stable at the site of implantation, without invoking any non-essential or undesirable biological responses. The potential for developing an injectable bone substitute (IBS) was investigated here.

View Article and Find Full Text PDF

The combination of kappa-carrageenan (κ-CG) and hydroxyapatite (HA) to generate a bone substitute material has been underexplored to date. Carrageenans (CGs) have remarkable characteristics such as biocompatibility, hydrophilicity, and structural similarities with natural glycosaminoglycans (GAGs), and they have demonstrated the ability to stimulate cellular adhesion and proliferation. Hydroxyapatite nanoparticles have been one of the most investigated materials for bone regeneration due to their excellent biocompatibility, bioactivity and osteoconductivity.

View Article and Find Full Text PDF

Tissue engineering is an emergent and very interesting research field, providing potential solutions for a myriad of challenges in healthcare. Fibrous scaffolds specifically have shown promise as an effective tissue engineering method, as their high length-to-width ratio mimics that of extracellular matrix components, which in turn guides tissue formation, promotes cellular adhesion and improves mechanical properties. In this review paper, we discuss in detail both the importance of fibrous scaffolds for the promotion of tissue growth and the different methods to produce fibrous biomaterials to possess favorable and unique characteristics.

View Article and Find Full Text PDF

Drug-eluting stents are an effective therapy for symptomatic arterial obstructions, substantially reducing the incidence of restenosis by suppressing the migration and proliferation of vascular smooth muscle cells into the intima. However, current drug-eluting stents also inhibit the growth of endothelial cells, which are required to cover the vascular stent to reduce an excessive inflammatory response. As a result, the endothelial lining of the lumen is not regenerated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1smoi4gbmkedlsmrm2e9921upnltl956): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once