Publications by authors named "Nicole Barat"

High-grade cervical dysplasia caused by human papillomavirus (HPV) type 16 is a lesion that should be susceptible to an HPV-specific immune response; disease initiation and persistence is predicated on expression of two viral Ags, E6 and E7. In immune-competent subjects, at least 25% of HPV16(+) high-grade cervical dysplasia lesions undergo complete regression. However, in the peripheral blood, naturally occurring IFN-γ T cell responses to HPV E6 and E7 are weak, requiring ex vivo sensitization to detect, and are not sufficiently sensitive to predict regression.

View Article and Find Full Text PDF

A pilot study was conducted to determine whether existing human or canine strains of Anaplasma phagocytophilum would reproduce clinical disease in experimentally inoculated dogs similar to dogs with naturally acquired granulocytic anaplasmosis. Six hounds were inoculated intravenously with one human and two canine strains of A. phagocytophilum that were propagated in vitro in HL-60 cells or in infected autologous neutrophils.

View Article and Find Full Text PDF

Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A.

View Article and Find Full Text PDF

MIP-2 and IFN-gamma inducible protein-10 (IP-10) and their respective receptors, CXCR2 and CXCR3, modulate tissue inflammation by recruiting neutrophils or T cells from the spleen or bone marrow. Yet, how these chemokines modulate diseases such as immune-mediated drug-induced liver injury (DILI) is essentially unknown. To investigate how chemokines modulate experimental DILI in our model we used susceptible BALB/c (WT) and IL-4-/- (KO) mice that develop significantly reduced hepatitis and splenic T cell priming to anesthetic haptens and self proteins following TFA-S100 immunizations.

View Article and Find Full Text PDF

Dogs are susceptible to different tickborne infections, including members of the Anaplasmataceae (Ehrlichia canis, E. ewingii, E. chaffeensis, Anaplasma phagocytophilum, A.

View Article and Find Full Text PDF

Anaplasma phagocytophilum causes human granulocytic anaplasmosis by inducing immunopathologic responses. Its immunodominant Msp2 protein is encoded by a family of >100 paralogs. Msp2 (msp2) expression modulates in the absence of immune pressure, and prolonged in vitro passage modulates in vivo virulence.

View Article and Find Full Text PDF

Borrelia burgdorferi and Anaplasma phagocytophilum coinfect and are transmitted by Ixodes species ticks. Clinical indicators suggest that A. phagocytophilum coinfection contributes to the severity, dissemination, and, possibly, sequelae of Lyme disease.

View Article and Find Full Text PDF

Patients with human granulocytic anaplasmosis present with fever, thrombocytopenia, leukopenia, and an elevated aspartate transaminase level. Clinical and histopathologic features of severe disease suggest macrophage activation. Twenty-nine patients with human granulocytic anaplasmosis had higher ferritin, interleukin-10, interleukin-12 p70, and interferon- gamma levels than did control subjects matched for age and sex; severity correlated with triglyceride, ferritin, and interleukin-12 p70 levels.

View Article and Find Full Text PDF

Msp2 is Anaplasma phagocytophilum's immunodominant protein. Antigenic variability with msp2 gene conversion may drive differential immunopathology with infection by bacteria of different in vitro passage intervals. We examined msp2 transcript variation and its relationship to histopathology, T-cell and antibody responses in mice infected with differentially passaged A.

View Article and Find Full Text PDF

Human granulocytic anaplasmosis is a tickborne rickettsial infection of neutrophils caused by Anaplasma phagocytophilum. The human disease was first identified in 1990, although the pathogen was defined as a veterinary agent in 1932. Since 1990, US cases have markedly increased, and infections are now recognized in Europe.

View Article and Find Full Text PDF