Publications by authors named "Nicole Bakas"

The standard protocol for Alloc group removal during peptide synthesis still presents limitations, including low reaction yields, -allylated byproducts, and the use of air-sensitive Pd(PPh). We addressed these challenges by developing a novel protocol using the air-stable Pd(PPh)Cl catalyst, Meldrum's acid (MA), and triethylsilane (TES-H). This combination ensured high yields, eliminated -allylated byproducts, and is compatible with automated synthesis.

View Article and Find Full Text PDF

Serine/threonine-protein kinases 3 and 4 (STK3 and STK4, respectively) are key components of the Hippo signaling pathway, which regulates cell proliferation and death and provides a potential therapeutic target for acute myeloid leukemia (AML). Herein, we report the structure-based design of a series of pyrrolopyrimidine derivatives as STK3 and STK4 inhibitors. In an initial screen, the compounds exhibited low nanomolar potency against both STK3 and STK4.

View Article and Find Full Text PDF

Inhibition of autophagy, the major cellular recycling pathway in mammalian cells, is a promising strategy for the treatment of triple-negative breast cancer (TNBC). We previously reported SBI-0206965, a small molecule inhibitor of unc-51-like autophagy activating kinase 1 (ULK1), which is a key regulator of autophagy initiation. Herein, we describe the design, synthesis, and characterization of new dual inhibitors of ULK1 and ULK2 (ULK1/2).

View Article and Find Full Text PDF

During times of stress, autophagy is a cellular process that enables cells to reclaim damaged components by a controlled recycling pathway. This mechanism for cellular catabolism is dysregulated in cancer, with evidence indicating that cancer cells rely on autophagy in the hypoxic and nutrient-poor microenvironment of solid tumors. Mounting evidence suggests that autophagy has a role in the resistance of tumors to standard-of-care (SOC) therapies.

View Article and Find Full Text PDF

Background/aim: Proteasome inhibition is a validated therapeutic strategy for the treatment of refractory and relapsed multiple myeloma (MM) and mantle cell lymphoma. We previously showed that thiasyrbactins (NAM compounds) are inhibitors with an affinity for the trypsin-like (T-L, β2) site of the constitutive proteasome, and more profoundly for the T-L site of the immunoproteasome.

Materials And Methods: In this study, the biological activity of three NAM compounds was evaluated using four MM cell lines (ARD, U266, MM1R, and MM1S).

View Article and Find Full Text PDF
Article Synopsis
  • * Surprisingly, some of these analogs were found to inhibit the trypsin-like catalytic site of the immunoproteasome, revealing their unique properties due to the thiasyrbactin ring structure.
  • * These new compounds demonstrated greater selectivity in inhibiting the immunoproteasome compared to older compounds like ONX-0914, indicating potential for development as drug-like inhibitors.*
View Article and Find Full Text PDF