Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na /Ca ) exchanger SLC8A1.
View Article and Find Full Text PDFFibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFβ1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis.
View Article and Find Full Text PDFBackground/aims: Fibro-adipogenic progenitors (FAPs), a muscle-resident stem cell population, have recently emerged as important actors of muscle regeneration by interacting with myogenic progenitors (MPs) to promote the formation of new muscle fibers. However, FAPs are also considered as main contributors of intramuscular fibrotic and fat depositions, resulting in a poor quality of muscles and a defective regeneration in aging and Duchenne Muscular Dystrophy disease (DMD). Therefore, the understanding of the control of FAP fate is an important aspect of muscle repair and homeostasis, but little is known in humans.
View Article and Find Full Text PDF