Publications by authors named "Nicole A Wilski"

Unlabelled: The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation.

View Article and Find Full Text PDF

Drug tolerance and minimal residual disease (MRD) are likely to prelude acquired resistance to targeted therapy. Mechanisms that allow persister cells to survive in the presence of targeted therapy are being characterized but selective vulnerabilities for these subpopulations remain uncertain. We identified cellular inhibitor of apoptosis protein 2 (cIAP2) as being highly expressed in SOX10-deficient drug tolerant persister (DTP) melanoma cells.

View Article and Find Full Text PDF

Unlabelled: Lack of response and acquired resistance continue to be limitations of targeted and immune-based therapies. Pyroptosis is an inflammatory form of cell death characterized by the release of inflammatory damage-associated molecular patterns (DAMP) and cytokines via gasdermin (GSDM) protein pores in the plasma membrane. Induction of pyroptosis has implications for treatment strategies in both therapy-responsive, as well as resistance forms of melanoma.

View Article and Find Full Text PDF

Unlabelled: Melanomas frequently harbor activating NRAS mutations. However, limited advance has been made in developing targeted therapy options for patients with NRAS mutant melanoma. MEK inhibitors (MEKi) show modest efficacy in the clinic and their actions need to be optimized.

View Article and Find Full Text PDF

Unleashing the immune system with immune checkpoint inhibitors (ICI) has significantly improved overall survival for subsets of patients with stage III/IV cancer. However, many tumors are nonresponsive to ICIs, in part due to a lack of tumor-infiltrating lymphocytes (TIL). Converting these immune "cold" tumors to "hot" tumors that are thus more likely to respond to ICIs is a major obstacle for cancer treatment.

View Article and Find Full Text PDF

Concurrent MEK and CDK4/6 inhibition shows promise in clinical trials for patients with advanced-stage mutant / solid tumors. The effects of CDK4/6 inhibitor (CDK4/6i) in combination with BRAF/MEK-targeting agents on the tumor immune microenvironment are unclear, especially in melanoma, for which immune checkpoint inhibitors are effective in approximately 50% of patients. Here, we show that patients progressing on CDK4/6i/MEK pathway inhibitor combinations exhibit T-cell exclusion.

View Article and Find Full Text PDF

CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a ubiquitous betaherpesvirus that infects many different cell types. Human CMV (HCMV) has been found in several solid tumors, and it has been hypothesized that it may promote cellular transformation or exacerbate tumor growth. Paradoxically, in some experimental situations, murine CMV (MCMV) infection delays tumor growth.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a herpesvirus that establishes a persistent, but generally asymptomatic, infection in most people in the world. However, CMV drives and sustains extremely large numbers of antigen-specific T cells and is, therefore, emerging as an exciting platform for vaccines against infectious diseases and cancer. Indeed, pre-clinical data strongly suggest that CMV-based vaccines can sustain protective CD8 T cell and antibody responses.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common human cancer and affects approximately 50,000 new patients every year in the US. The major risk factors for HNSCC are tobacco and alcohol consumption as well as oncogenic HPV infections. Despite advances in therapy, the overall survival rate for all-comers is only 50%.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a herpesvirus that induces an extremely robust and sustained immune response. For this reason, CMV has been proposed as a vaccine vector to promote immunity to both pathogens and cancer. However, exploration of CMV as a vaccine vector is at an early stage and there are many questions.

View Article and Find Full Text PDF

It is well known that CD8 tumor-infiltrating lymphocytes (TILs) are correlated with positive prognoses in cancer patients and are used to determine the efficacy of immune therapies. Although it is generally assumed that CD8 TILs will be tumor-associated Ag (TAA) specific, it is unknown whether CD8 T cells with specificity for common pathogens also infiltrate tumors. If so, the presence of these T cells could alter the interpretation of prognostic and diagnostic TIL assays.

View Article and Find Full Text PDF

Cytomegalovirus is an attractive cancer vaccine platform because it induces strong, functional CD8(+) T-cell responses that accumulate over time and migrate into most tissues. To explore this, we used murine cytomegalovirus expressing a modified gp100 melanoma antigen. Therapeutic vaccination by the intraperitoneal and intradermal routes induced tumor infiltrating gp100-specific CD8(+) T-cells, but provided minimal benefit for subcutaneous lesions.

View Article and Find Full Text PDF