Publications by authors named "Nicole A Schneck"

Article Synopsis
  • Bi-functional N-Hydroxysuccinimide (NHS) linkers are crucial in connecting immunogens with carrier proteins to enhance immune responses, particularly in HIV-1 vaccine development.
  • The study investigated the degradation kinetics of these linkers using reversed-phase liquid chromatography (RPLC-UV) to ensure effective conjugation before the linkers become inactive.
  • Three types of cross-linkers were examined for their degradation pathways, with specific kinetics reported for the Sulfosuccinimidyl (4-iodoacetyl) aminobenzoate (Sulfo-SIAB) linker.
View Article and Find Full Text PDF

Bioanalytical assays to measure rhamnose, erythritol, lactulose and sucralose in human urine and plasma were developed to support an indomethacin challenge study for intestinal permeability assessment in healthy participants. The multi-sugar assays utilized 5-μl sample matrix and a simple chemical derivatization with acetic anhydride, followed by RPLC-MS/MS detection. Rhamnose and erythritol quantification was established between 1.

View Article and Find Full Text PDF

Relatively large disulfide-linked polypeptides can serve as signaling molecules for a diverse array of biological processes and may be studied in animal models to investigate their function . The aim of this work was to develop an LC-MS/MS assay to measure a model peptide, INSL3, in rat plasma. A dual enrichment strategy incorporating both protein precipitation and solid phase extraction was utilized to isolate INSL3 from rat plasma, followed by targeted LC-MS/MS detection.

View Article and Find Full Text PDF

LC-MS analysis of therapeutic antibodies and other biotherapeutics from in-life studies (e.g., serum/plasma) has evolved from simple peptide digestion to peptide mapping and intact mass monitoring.

View Article and Find Full Text PDF

Time-of-flight MS systems for biopharmaceutical and protein characterization applications may play an even more pivotal role in the future as biotherapeutics increase in drug pipelines and as top-down MS approaches increase in use. Here, a recently developed TOF MS system is examined for monoclonal antibody (mAb) characterization from serum samples. After immunocapture, purified drug material spiked into monkey serum or dosed for an in-life study is analyzed by top-down MS.

View Article and Find Full Text PDF

Sensitive, multiplexed protein quantification remains challenging despite recent advancements in LC-MS assays for targeted protein biomarker quantification. High-sensitivity protein biomarker measurements usually require immuno-affinity enrichment of target protein; a process which is highly dependent on capture reagent and limited in capability to measure multiple analytes. Herein, we report a novel antibody-free platform, which measures multiple biomarkers from complex matrices employing a strategically optimized solid-phase extraction cleanup and orthogonal multidimensional LC-MS.

View Article and Find Full Text PDF
Article Synopsis
  • CAP256V2LS is a monoclonal antibody being developed for HIV-1 prevention, highlighting the importance of tyrosine-O-sulfation in its biological activity.
  • The researchers introduced a new chromatography method to analyze and quantify different sulfated proteoforms, discovering that the fully sulfated form (4-SO) was the most effective in binding to and neutralizing HIV-1 viruses.
  • Variations in the production of the 4-SO proteoform from different CHO cell lines are important for optimizing the development of a potent clinical product, emphasizing the role of sulfation in enhancing the efficacy of biotherapeutics.
View Article and Find Full Text PDF

Antibody 10E8 is capable of effectively neutralizing HIV through its recognition of the membrane-proximal external region (MPER), and a suitably optimized version of 10E8 might have utility in HIV therapy and prophylaxis. However, 10E8 displays a three-peak profile on size-exclusion chromatography (SEC), complicating its manufacture. Here we show cis-trans conformational isomerization of the Tyr-Pro-Pro (YPP) motif in the heavy chain 3rd complementarity-determining region (CDR H3) of antibody 10E8 to be the mechanistic basis of its multipeak behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on using recombinant Tetanus toxoid heavy chain fragment C (rTTHC) as a carrier to enhance the effectiveness of HIV-1 fusion peptide vaccines.
  • Comprehensive mass spectrometry was conducted during rTTHC purification, revealing three types of cysteine modifications linked to the protein's oxidative states.
  • These findings helped confirm the identity of the rTTHC protein, ensuring the purification process was effective and laying the groundwork for further vaccine development.
View Article and Find Full Text PDF

One of the HIV-1 vaccine design efforts has focused on developing a recombinant HIV-1 trimeric envelope glycoprotein (Env) as an immunogen to induce broadly neutralizing antibodies. A native-like immunogen, the BG505.DS.

View Article and Find Full Text PDF

Antibody biotherapeutic measurement from pharmacokinetic studies has not been traditionally based on intact molecular mass as is the case for small molecules. However, recent advancements in protein capture and mass spectrometer technology have enabled intact mass detection and quantitation for dosed biotherapeutics. A bioanalytical method validation is part of the regulatory requirement for sample analysis to determine drug concentration from in-life study samples.

View Article and Find Full Text PDF

A fusion peptide mimicking a part of the sequence of HIV-1 envelope glycoprotein with an additional cysteine at its C-terminus (FP8: AVGIGAVFC) was conjugated to a carrier protein through a linker for development of an HIV-1 vaccine. Since this fusion peptide is very hydrophobic with poor solubility and can self-dimerize via a disulfide bond, co-existence of monomeric and dimeric forms presented a major challenge for residual unconjugated FP8 quantification. A reversed-phase liquid chromatography (RPLC) with UV detection was developed to monitor residual FP8 using an experimental correction factor of 0.

View Article and Find Full Text PDF

Generating a soluble and native-like trimeric envelope glycoprotein (Env) with high efficacy as an immunogen has been a major focus for developing an effective vaccine against HIV-1. The Env immunogen is a heavily glycosylated protein composed of 3 identical surface gp120 and gp41 subunits that form into a trimer of heterodimers (3 × 28 N-glycan sites). During Env immunogen production, endogenous furin works to cleave a hexa-arginine motif connecting the gp120 and gp41 subunits, which is needed to ensure proper protein folding and a native-like conformation of Env.

View Article and Find Full Text PDF

A hemagglutinin stabilized stem nanoparticle (HA-SS-np) that is designed to provide broad protection against influenza is being developed as a potential vaccine. During an early formulation screening study, reducing gel (rCGE) analysis indicated product degradation in a few candidate buffers at the first-week accelerated stability point, whereas no change was shown in the size exclusion chromatography (SEC) measurement. A LC-MS workflow was therefore applied to investigate the integrity of this large HA-SS-np vaccine molecule (≈ 1 MDa).

View Article and Find Full Text PDF

Application of a protease inhibitor, 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), during the cell culture process was demonstrated to effectively reduce proteolytic activity at a specific amino acid site during the production of an HIV-1 broadly neutralizing antibody (bNAb). However, the addition of AEBSF could potentially introduce some modifications to the bNAb protein. Experimental design from sample preparation to LC-MS characterization was performed using middle-up and bottom-up approaches to identify AEBSF-modified species for the bNAb using an AEBSF supplementation in the cell culture media.

View Article and Find Full Text PDF

An efficient and specific liquid chromatography (LC)-based assay was developed to monitor the production of recombinant HIV-1 trimeric envelope glycoprotein (HIV Env trimer), a candidate vaccine for HIV-1 infection, in cell culture media to support scale-up process development. In this method, titer measurement was achieved by coupling a weak anion exchange chromatography (IEC) column with a size exclusion chromatography (SEC) column. This assay was specific, accurate, precise, and has been qualified for its intended purpose, with a limit of quantification (LOQ) of 10 µg/mL.

View Article and Find Full Text PDF

A new tandem chromatography method was developed to directly measure the titers of various vaccine candidate molecules in cell culture without a prior purification step. The method utilized a strong anion exchange chromatography (IEC) column in tandem with a size exclusion chromatography (SEC) column to efficiently separate the nanoparticle and virus-like particle (VLP) vaccine molecules from host cell proteins and other components in the cell culture media. The dual (charge and hydrodynamic size) separation mode was deemed necessary to achieve good separation of the vaccine product for quantitation.

View Article and Find Full Text PDF

During research of a broadly neutralizing antibody (bNAb) for HIV-1 infection, site-specific clipping was observed during cell culture incubation. Protease inhibitor, 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), was supplemented to the cell culture feeding to mitigate clipping as one of the control strategies. It led to the need and development of a new assay to monitor the free AEBSF-related impurities during the purification process.

View Article and Find Full Text PDF

CAP256 is one of the highly potent, broadly neutralizing monoclonal antibodies (bNAb) designed for HIV-1 therapy. During the process development of one of the constructs, an unexpected product-related impurity was observed via microfluidics gel electrophoresis. A panel of complementary LC-MS analyses was applied for the comprehensive characterization of CAP256 which included the analysis of the intact and reduced protein, the middle-up approach, and a set of complementary peptide mapping techniques and verification of the disulfide bonds.

View Article and Find Full Text PDF

Quantification of cardiac troponin I (cTnI), a protein biomarker used for diagnosing myocardial infarction, has been achieved in native patient plasma based on an immunoaffinity enrichment strategy and isotope dilution (ID) liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The key steps in the workflow involved isolating cTnI from plasma using anti-cTnI antibody coupled to magnetic nanoparticles, followed by an enzymatic digestion with trypsin. Three tryptic peptides from cTnI were monitored and used for quantification by ID-LC-MS/MS via multiple reaction monitoring (MRM).

View Article and Find Full Text PDF

Quantifying the amount of antibody on magnetic particles is a fundamental, but often overlooked step in the development of magnetic separation-based immunoaffinity enrichment procedures. In this work, a targeted mass spectrometry (MS)-based method was developed to directly measure the amount of antibody covalently bound to magnetic particles. Isotope-dilution liquid chromatography-tandem MS (ID-LC-MS/MS) has been extensively employed as a gold-standard method for protein quantification.

View Article and Find Full Text PDF

Magnetic particles have traditionally been utilized to isolate and enrich various cardiovascular protein biomarkers for mass spectrometry-based proteomic analysis. The application of functionalized magnetic particles for immunocapture is attractive due to their easy manipulation, large surface area-to-volume ratios for maximal antibody binding, good recovery and high magnetic saturation. Magnetic particle enrichment coupled with mass spectrometry can act as a complementary tool for clinical sandwich-immunoassay development since it can provide improved target specificity and true metrological traceability.

View Article and Find Full Text PDF

Four non-covalently prepared molecularly imprinted polymers (MIPs) for sulfadimethoxine (SDM) were prepared using different ratios of SDM template, methacrylic acid monomer, and ethylene glycol dimethacrylate cross-linker. The imprinting factor (IF) was calculated by comparing the retention of SDM on the imprinted polymer with a comparable non-imprinted polymer. The template:monomer:cross-linker ratio of 1:6:20 resulted in an IF of 3.

View Article and Find Full Text PDF