The one-stage treatment of chronic osteomyelitis with S53P4 bioactive glass (BAG) granules has shown excellent results. However, these granules possess suboptimal handling properties. Therefore, new injectable S53P4 putty materials have been developed by the incorporation of a synthetic binder to contain glass granules.
View Article and Find Full Text PDFBioactive glass (BAG) granules (S53P4) have shown good clinical results in one-stage treatment of osteomyelitis. During this treatment, a cortical window is created, and infected bone is debrided, which results in large defects that affect the mechanical properties of the bone. This study aimed to evaluate the role of BAG granules in load-bearing bone defect grafting.
View Article and Find Full Text PDFClinically, S53P4 bioactive glass (BAG) has shown very promising results in bone infection treatment, but it is also known to degrade very slowly in vivo. To evaluate which mechanisms (cellular or dissolution) can play a role in the degradation of S53P4 BAG and S53P4 BAG putty, in vitro degradation experiments at different pH (7.4 and 4.
View Article and Find Full Text PDFCalcium phosphate cements (CPCs) are commonly used as bone substitute materials. However, their slow degradation rate and lack of macroporosity hinders new bone formation. Poly(dl-lactic-co-glycolic acid) (PLGA) incorporation is of great interest as, upon degradation, produces acidic by-products that enhance CPC degradation.
View Article and Find Full Text PDF